一道高代入门题 求证:多项式f(x)除以(x-a)(x-b)所得余数是[Xf(a)-Xf(b)+af(b)-bf(a)]
设f'(a)=b,求:当x趋近于a时[xf(a)-af(x)]/(x-a)的极限
若非零函数f(x)对任意实数a、b均有f(a+b)=f(a)xf(b),且当x1.1、求证f(x)>0
函数f(x)与xf(x)在[a,b]上连续,且f(x)与xf(x)在[a,b]上的定积分都==0,
已知0<a<b,f(x)在(a,b)连续可导,求证存在一点x属于(a,b)使f(b)-f(a)=xf'(x)(b-a)
设e^(-x)是f(x)的一个函数,则∫xf(x)dx= A e^(-x) (1-x)+C B e^(-x) (1+x)
设函数f(x)在【a,b】上连续且单调增加,求证∫[a ,b] xf(x)dx >=a+b/2∫[a ,b] f(x)d
一道导数题,f(x)是定义在(0,正无穷大)上的非负可导函数,且满足xf'(x)+f(x)≤0.对任意正数a、b,若a<
高数证明题:f(a)=0,f(b)=0,若在(a,b)内可导,f(x)+xf'(x)在(a,b)里有没有存在0点 并证明
已知函数y=f(x)在R上可导,满足xf'(x)>-f(x),若a>b,则
设f(x)是连续函数,则d(∫下0上xf(x-t)dt)/dx=(); a.f(0),b.-f(0),c.f(x),d.
f(x)是定义在(0,+∞)上的非负可导函数,且满足xf′(x)-f(x)≤0,对任意正数a,b,若a
定积分的证明设函数f(x)在[a,b]上连续且单调递增,求证:∫[b,a] xf(x)dx≥[(a+b)/2]∫[b,a