作业帮 > 数学 > 作业

已知数列{an}的前n项之和S满足Sn=1-2/3an(n属于N)求limSn

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 05:09:39
已知数列{an}的前n项之和S满足Sn=1-2/3an(n属于N)求limSn
已知数列{an}的前n项之和S满足Sn=1-2/3an(n属于N)求limSn
an=Sn-S(n-1) (n>=2)
=[1-(2/3)an]-[1-(2/3)a(n-1)]
=-(2/3)an+(2/3)a(n-1)
然后合并同类项,得
(5/3)an=(2/3)a(n-1)
an/a(n-1)=2/5
a1=S1=1-(2/3)a1
所以(5/3)a1=1,a1=3/5
那么{an}就是以3/5为首项,2/5为公比的等比数列,则Sn=[(3/5)*(1-(2/5)^n)]/(1-2/5)=1-(2/5)^n
n为正整数,所以limSn=1
(其实严谨一点的话是应该验证一下a1是否为数列an中的一项,就把a2也算出来,除以a1看是不是等于公比即可.或者你嫌麻烦,也可以一开始就用a(n+1)=S(n+1)-Sn做,简洁还不容易被老师挑毛病,我选择的方法只是因为它比较直观)