高数,定积分1.设f(x)是连续函数,且∫f(t)dt=x,求f(x)2.设f(x)=∫arctan(1+t²
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/06 08:27:12
高数,定积分
1.设f(x)是连续函数,且∫f(t)dt=x,求f(x)
2.设f(x)=∫arctan(1+t²)dt,求f '(0)
1.设f(x)是连续函数,且∫f(t)dt=x,求f(x)
2.设f(x)=∫arctan(1+t²)dt,求f '(0)
1.∵∫f(t)dt=x
==>(x³-1)'*f(x³-1)=1 (根据参数积分求导公式,对等式两端求导)
==>3x²f(x³-1)=1
==>f(x³-1)=1/(3x²)
令t=x³-1,则x=(t+1)^(1/3)
∴f(t)=f(x³-1)=1/(3x²)=(1/3)(t+1)^(-2/3)
故f(x)=(1/3)(x+1)^(-2/3);
2.∵f(x)=∫arctan(1+t²)dt
==>f'(x)=(sinx)'arctan(1+sin²x)-(-x)'arctan(1+(-x)²)
==>f'(x)=cosx*arctan(1+sin²x)+arctan(1+x²)
∴f'(0)=1*arctan(1+0)+arctan(1+0)
=arctan1+arctan1
=π/4+π/4
=π/2.
==>(x³-1)'*f(x³-1)=1 (根据参数积分求导公式,对等式两端求导)
==>3x²f(x³-1)=1
==>f(x³-1)=1/(3x²)
令t=x³-1,则x=(t+1)^(1/3)
∴f(t)=f(x³-1)=1/(3x²)=(1/3)(t+1)^(-2/3)
故f(x)=(1/3)(x+1)^(-2/3);
2.∵f(x)=∫arctan(1+t²)dt
==>f'(x)=(sinx)'arctan(1+sin²x)-(-x)'arctan(1+(-x)²)
==>f'(x)=cosx*arctan(1+sin²x)+arctan(1+x²)
∴f'(0)=1*arctan(1+0)+arctan(1+0)
=arctan1+arctan1
=π/4+π/4
=π/2.
设f(x)是连续函数,且满足∫[0,x]f(x-t)dt=e^(-2x)-1,求定积分∫[0,1]f(x)dx
设f(x)=x+2∫f(t)dt,积分上限是1,下限是0 其中f(x)为连续函数,求f(x)
设f(x)=sinx-∫(0~t)(x-t)f(t)dt,f为连续函数,求f(x).
设连续函数f(x)满足f(x)=e^x-∫(0,x)f(t)dt,求f(x)
设f(x)为连续函数,且符合关系f(x)=e^x-∫(0,x)(x-t)f(t)dt,求函数f(x)
设f(x)为连续函数,且满足f(x)=1+xf(t)dt/t^2从1到X的积分,试求f(x)
设f(x)是闭区间[0,1]上的连续函数,且f(x)=[1/(1+x^2)]+x^2∫f(t)dt,求∫f(x)dx.定
,设f(x)是连续函数,且f(x)=x+2∫[1,0]f(t)dt ,则∫[1,0]f(x)dx=?
设函数y=∫(0,x)(x-t)f(t)dt,f(x)为连续函数,
高数积分题一道,设f(x)有连续导数且F(x)=∫(0→x)f(t)f'(2a-t)dt
设∫f(tx)dt=f(x)+sinx,求连续函数f(x),积分上下限是0到1
设f(x)是闭区间[0,1]上连续函数,且f(x)=1/(1+x^2)+x^3∫f(t)dt