设∫f(tx)dt=f(x)+sinx,求连续函数f(x),积分上下限是0到1
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 11:01:11
设∫f(tx)dt=f(x)+sinx,求连续函数f(x),积分上下限是0到1
题目修正:∫[0,1] f(tx) dt = f(x) + xsinx
令u = tx,du = xdt => dt = du/x
当t = 0,u = 0;当t = 1,u = x
∫[0,1] f(tx) dt = (1/x)∫[0,x] f(u) du = f(x) + xsinx
∫[0,x] f(u) du = xf(x) + x²sinx,两边求导
d/dx ∫[0,x] f(u) du = d/dx xf(x) + d/dx x²sinx
f(x) = xf'(x) + f(x) + x²cosx + 2xsinx
xf'(x) = -x²cosx - 2xsinx
f'(x) = -xcosx - 2sinx
f(x) = -∫ xcosx dx - 2∫ sinx dx
= -∫ x d(sinx) - 2∫ sinx dx
= -xsinx + ∫ sinx dx - 2∫ sinx dx
= -xsinx - ∫ sinx dx
= -xsinx + cosx + C
令u = tx,du = xdt => dt = du/x
当t = 0,u = 0;当t = 1,u = x
∫[0,1] f(tx) dt = (1/x)∫[0,x] f(u) du = f(x) + xsinx
∫[0,x] f(u) du = xf(x) + x²sinx,两边求导
d/dx ∫[0,x] f(u) du = d/dx xf(x) + d/dx x²sinx
f(x) = xf'(x) + f(x) + x²cosx + 2xsinx
xf'(x) = -x²cosx - 2xsinx
f'(x) = -xcosx - 2sinx
f(x) = -∫ xcosx dx - 2∫ sinx dx
= -∫ x d(sinx) - 2∫ sinx dx
= -xsinx + ∫ sinx dx - 2∫ sinx dx
= -xsinx - ∫ sinx dx
= -xsinx + cosx + C
设∫f(tx)dt=f(x)+sinx,求连续函数f(x),积分上下限是0到1
设f(x)=x+2∫f(t)dt,积分上限是1,下限是0 其中f(x)为连续函数,求f(x)
设有连续函数f(x)满足∫f(tx)dt(从0到1)=f(x)+xsinx,求f(x).
求证连续函数f(x)满足:∫(0到1)f(tx)dt=f(x)+xsinx
已知:t从0到1的f(tx)dt的定积分=1/2f(x)+1,求连续函数f(x)
f(x)是连续函数,满足f(x)=exp{∫f(t/3)dt},积分上限是3x ,下限是0,求f(x
设f(x)在0到正无穷上连续,若积分上限f(x),下限0,t^2dt=x^2(x+1),求f(2)
设f(x)=sinx-∫(0~t)(x-t)f(t)dt,f为连续函数,求f(x).
设f(x)是连续函数,且满足∫[0,x]f(x-t)dt=e^(-2x)-1,求定积分∫[0,1]f(x)dx
设f(x)位连续函数.求d∫f(x+t)dt/dx 积分上限是2 下限是1
设f(x)是连续函数,且f(x)=x^2+2∫上限1下限0f(t)dt,试求:(1)∫上限1下限0f(x)dx;求详解?
已知f(x)是一个连续函数,设F(x)=∫ [0,x]xf(t)dt,球F'(x) [0,x] 中0是下限 x是上限