已知以F1(-2,0),(2,0)为焦点的椭圆与直线x+√3y+4=0有且仅有一个交点,则椭圆的长轴为?
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 16:32:12
已知以F1(-2,0),(2,0)为焦点的椭圆与直线x+√3y+4=0有且仅有一个交点,则椭圆的长轴为?
∵a^2-b^2=c^2=4,∴a^2=4+b^2,∴椭圆方程可写成:x^2/(4+b^2)+y^2/b^2=1.
由直线x+√3y+4=0,得:x=-4-√3y,代入上述椭圆方程中,得:
(-4-√3y)^2/(4+b^2)+y^2/b^2=1,
∴b^2(4+√3y)^2+(4+b^2)y^2=(4+b^2)b^2,
∴16b^2+8√3b^2y+3b^2y^2+(4+b^2)y^2-(4+b^2)b^2=0,
∴4(1+b^2)y^2+8√3b^2y+(12-b^2)b^2=0.
∵直线x+√3y+4=0与椭圆x^2/(4+b^2)+y^2/b^2=1只有一个交点,
∴方程4(1+b^2)y^2+8√3b^2y+(12-b^2)b^2=0的两根相等,∴它的判别式为0.
∴(8√3b^2)^2-4[4(1+b^2)][(12-b^2)b^2]=0,
∴12b^4-(1+b^2)(12-b^2)b^2=0.
显然,b>0,∴12b^2-(1+b^2)(12-b^2)=0,
12b^2-12+b^2-12b^2+b^4=0, ∴b^4+b^2-12=0, ∴(b^2+4)(b^2-3)=0,
∴b^2=3,进而得:a^2=4+b^2=4+3=7, ∴a=√7, ∴2a=2√7.
即:满足条件的椭圆长轴长为2√7.
由直线x+√3y+4=0,得:x=-4-√3y,代入上述椭圆方程中,得:
(-4-√3y)^2/(4+b^2)+y^2/b^2=1,
∴b^2(4+√3y)^2+(4+b^2)y^2=(4+b^2)b^2,
∴16b^2+8√3b^2y+3b^2y^2+(4+b^2)y^2-(4+b^2)b^2=0,
∴4(1+b^2)y^2+8√3b^2y+(12-b^2)b^2=0.
∵直线x+√3y+4=0与椭圆x^2/(4+b^2)+y^2/b^2=1只有一个交点,
∴方程4(1+b^2)y^2+8√3b^2y+(12-b^2)b^2=0的两根相等,∴它的判别式为0.
∴(8√3b^2)^2-4[4(1+b^2)][(12-b^2)b^2]=0,
∴12b^4-(1+b^2)(12-b^2)b^2=0.
显然,b>0,∴12b^2-(1+b^2)(12-b^2)=0,
12b^2-12+b^2-12b^2+b^4=0, ∴b^4+b^2-12=0, ∴(b^2+4)(b^2-3)=0,
∴b^2=3,进而得:a^2=4+b^2=4+3=7, ∴a=√7, ∴2a=2√7.
即:满足条件的椭圆长轴长为2√7.
已知以F1(-2,0)F2(2,0)为焦点的椭圆与直线X+√3*Y+4=0有且仅有一个交点,则椭圆的长轴长为多少?
已知以F1(2,0),F2(2,0)为焦点的椭圆与直线 X+√3Y+4=0有且仅有一个交点,则椭圆的
已知以F1(-2,0),F2(2,0)为焦点的椭圆与直线X+√3Y+4=0有且只有一个交点,则椭圆的长轴长为?
已知以f1(-2,0),f2(2,0)为焦点的椭圆与直线x+更号3y+4=0有且只有1个交点 则椭
已知椭圆的焦点F1(-3,0).F2(3,0),且与直线X-Y+9=0有公共点,则其中长轴最短的椭圆方程为?
高二数学已知某椭圆的焦点是F1(-4,0),F2(4,0),过点F2并垂直于x轴的直线与椭圆的一个交点为B,且|F1B|
已知椭圆X^2/a+y^2/b=1的一个焦点是(根号2,0),且截直线x=根号2所得的弦长为4根号6/3,则椭圆方程为
已知椭圆的中心在原点,准线为x=±4√2 ,若过直线x- √2 y=0与椭圆的交点在x轴上的射影恰为椭圆的焦点,
椭圆C的焦点在x轴上,焦距为2,直线n:x-y-1=0与椭圆C交于A、B两点,F1是左焦点,且F1A┴F1B,则椭圆C的
已知一个椭圆的方程:4X^2+9Y^2=36,若该椭圆的右焦点为F2,且经过左焦点F1且倾斜角为α的直线M与椭圆交于A,
已知椭圆3x^2+4y^2=12 且过左焦点F1的直线与椭圆有AB两点且S△AF2B的面积为 12√2/7求直线L的方程
已知椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1、F2,过F1作倾斜角为30°的直线与椭圆有一个交点P