设圆C1的方程为(x+2)^2+(y-3m-2)^2=4(m^2),直线l的方程为y=x+m+1,求圆C1关于l对称的圆
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/20 16:20:41
设圆C1的方程为(x+2)^2+(y-3m-2)^2=4(m^2),直线l的方程为y=x+m+1,求圆C1关于l对称的圆C2的方程
圆心O(-2,3m+2)
设O关于l的对称点是B(a,b)
则直线OB垂直l,且OB中点在l上
l的斜率=1
所以OB斜率(3m+2-b)/(-2-a)=-1
3m+2-b=a+2
a+b=3m
OB中点[(a-2)/2,(3m+2+b)/2]在l上
则(3m+2+b)/2=(a-2)/2+m+1
a-b=m+2
a+b=3m
所以a=2m+1
b=m-1
两个圆半径相等
所以是(x-2m-1)^2+(y-m+1)^2=4m^2
设O关于l的对称点是B(a,b)
则直线OB垂直l,且OB中点在l上
l的斜率=1
所以OB斜率(3m+2-b)/(-2-a)=-1
3m+2-b=a+2
a+b=3m
OB中点[(a-2)/2,(3m+2+b)/2]在l上
则(3m+2+b)/2=(a-2)/2+m+1
a-b=m+2
a+b=3m
所以a=2m+1
b=m-1
两个圆半径相等
所以是(x-2m-1)^2+(y-m+1)^2=4m^2
设圆C1的方程为(x+2)^2+(y-3m-2)^2=4m^2,直线l的方程为y=x+m+2.
已知圆C1的方程为:x²+y²-4y=0,求1、圆C1关于直线l:x+y+2=0对称的圆C2的标准方
已知直线l为4x+y-1=0,求l关于点M(2,3)对称的直线l'的方程.书上的解法是设l'的方程为4x+y+c=0,则
设圆C1:(X+2)^2+(Y-3m-2)^2=4m^2,直线l:y=x+m+2,当m变化且m≠0时,(1)求C1关于l
已知圆C1:x2+(y+5)2=5,点A(1,-3).①求过点A与圆C1相切的直线L的方程;②设圆C2为圆C1关于直线L
已知圆C1:x^2+y^2=4和圆C2:x^2+y^2+4x-4y=0关于直线l对称,求直线l的方程)的圆C的切线方程
已知直线l和直线m的方程分别为2x-y+1=0,3x-y=0,则直线m关于直线l的对称直线m′的方程为______.
已知直线l为4x+y-1=0,求l关于M(2,3)对称的直线l’方程.解得关于M点对称点为(4分之15,6),(4,5
若圆C1:x^2+y^2=8和圆C2:x^2+y^2+4x-4y=0关于直线l对称,则直线的方程为?
已知直线l为4x+y-1=0,求l关于点M(2,3)对称的直线l'的方程.为什么只有4x+y-21对?对称占(4分之15
已知曲线M的方程为x^2+y^2-4x+2my+2m^2-2m+1=0.若曲线M与圆N:x^2+y^2=4关于直线l对称
已知直线l :2x-3y+1=0 直线m:3x-2y-6=0关于直线l的对称直线m'的方程