设圆C1:(X+2)^2+(Y-3m-2)^2=4m^2,直线l:y=x+m+2,当m变化且m≠0时,(1)求C1关于l
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/24 00:00:49
设圆C1:(X+2)^2+(Y-3m-2)^2=4m^2,直线l:y=x+m+2,当m变化且m≠0时,(1)求C1关于l对称的圆C2的方程?
(2)当m变化且m≠0时,求证:C2的圆心在同一条定直线上,并求C2所表示的一系列圆的公切线方程
“共切线就是定直线的平行线 距离为半径”?不理解
m改变,半径2M也在变,为什么会平行?
(2)当m变化且m≠0时,求证:C2的圆心在同一条定直线上,并求C2所表示的一系列圆的公切线方程
“共切线就是定直线的平行线 距离为半径”?不理解
m改变,半径2M也在变,为什么会平行?
C1,圆心(-2,3m+2),
C2的圆心就是此点关于y=x+m+2的对称点
设C2圆心(a,b)
则过两圆心的直线垂直于y=x+m+2,且两圆心的中点在y=x+m+2上
y=x+m+2斜率是1
所以过两圆心的直线斜率是-1
(b-3m-2)/(a+2)=-1
a+b=3m
两圆心的中点在y=x+m+2上
(b+3m+2)/2=(a-2)/2+m+2
a-b=m+2
所以a=2m+1,b=m-1
对称的圆半径不变
所以C2:(x-2m-1)^2+(y-m+1)^2=4m^2
C2的圆心的坐标x=2m+1,y=m-1
m=y+1
x=2(y+1)+1
x-2y-3=0
所以圆心在x-2y-3=0这条直线上
所以C2所表示的一系列圆的公切线应该是和x-2y-3=0平行且直线距离等于半径的直线
所以公切线是x-2y+k=0
圆心(2m+1,m-1)
到直线的距离=|2m+1-2m+2+k|/√(1^2+2^2)=|k|/√5
半径=2|m|
|k|/√5=2|m|
k=±2√5m
所以公切线有两条
x-2y+2√5m=0
x-2y-2√5m=0
C2的圆心就是此点关于y=x+m+2的对称点
设C2圆心(a,b)
则过两圆心的直线垂直于y=x+m+2,且两圆心的中点在y=x+m+2上
y=x+m+2斜率是1
所以过两圆心的直线斜率是-1
(b-3m-2)/(a+2)=-1
a+b=3m
两圆心的中点在y=x+m+2上
(b+3m+2)/2=(a-2)/2+m+2
a-b=m+2
所以a=2m+1,b=m-1
对称的圆半径不变
所以C2:(x-2m-1)^2+(y-m+1)^2=4m^2
C2的圆心的坐标x=2m+1,y=m-1
m=y+1
x=2(y+1)+1
x-2y-3=0
所以圆心在x-2y-3=0这条直线上
所以C2所表示的一系列圆的公切线应该是和x-2y-3=0平行且直线距离等于半径的直线
所以公切线是x-2y+k=0
圆心(2m+1,m-1)
到直线的距离=|2m+1-2m+2+k|/√(1^2+2^2)=|k|/√5
半径=2|m|
|k|/√5=2|m|
k=±2√5m
所以公切线有两条
x-2y+2√5m=0
x-2y-2√5m=0
设圆C1:(X+2)^2+(Y-3m-2)^2=4m^2,直线l:y=x+m+2,当m变化且m≠0时,(1)求C1关于l
设圆C1的方程为(x+2)^2+(y-3m-2)^2=4m^2,直线l的方程为y=x+m+2.
如果把圆C:x2+y2-2x=0沿向量a=(m,m)平移后得到圆C1,且圆C1与直线L:3x-4y=0相切,求m
如果把圆C:x^2+y^2-2x=0沿向量a=(m,m)平移后得到圆c1,且圆c1与直线l:3x-4y=0相切,求实数m
直线l:y=kx与圆C1:(x-1)^2+y^2=1相交于A、B两点,圆C2与圆C1相外切,且与直线l相切于点M(3,根
已知曲线C1:y=X^2,C2:y=2x^2-3x+3,直线l:y=kx+m,l与C1和C2有四个交点,从左向右依次是A
已知直线l:(m²-m-2)x+2y+m-2=0,k:2x+(m-2)y+2=0.求m为何值时
已知直线l;mx+y-1-m=0和圆C;x^2+y^2-4x=0若圆C关于直线l对称求m的值,证明不论m为何值l与圆C有
已知圆C:(x-1)的平方+(y-3)的平方=16,直线l:(2m+3)x+(m+4)y+2m-2=0 当m=1时,直线
已知直线l :2x-3y+1=0 直线m:3x-2y-6=0关于直线l的对称直线m'的方程
设直线l的方程为(m²-2m-3)x+(2m²+m-1)y=2m-6...
已知直线l:x/m+y/(4-m)=1,若直线的斜率为2,求m的值