已知函数f(x)=x|x|.当x∈[a,a+1]时,不等式f(x+2a)>4f(x)恒成立,则实数a的取值范围是____
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 19:41:52
已知函数f(x)=x|x|.当x∈[a,a+1]时,不等式f(x+2a)>4f(x)恒成立,则实数a的取值范围是______.
∵y=|x|为偶函数,y=x为奇函数
∴f(x)=x|x|奇函数
当x≥0时,f(x)=x2为增函数,由奇函数在对称区间上单调性相同可得
函数f(x)在R上增函数
又∵不等式f(x+2a)>4f(x)可化为(x+2a)|x+2a|>4x•|x|=2x•|2x|=f(2x)
故当x∈[a,a+1]时,不等式f(x+2a)>4f(x)恒成立,
即当x∈[a,a+1]时,不等式x+2a>2x恒成立
即x<2a恒成立
即a+1<2a
解得a>1
故实数a的取值范围是(1,+∞)
故答案为:(1,+∞)
∴f(x)=x|x|奇函数
当x≥0时,f(x)=x2为增函数,由奇函数在对称区间上单调性相同可得
函数f(x)在R上增函数
又∵不等式f(x+2a)>4f(x)可化为(x+2a)|x+2a|>4x•|x|=2x•|2x|=f(2x)
故当x∈[a,a+1]时,不等式f(x+2a)>4f(x)恒成立,
即当x∈[a,a+1]时,不等式x+2a>2x恒成立
即x<2a恒成立
即a+1<2a
解得a>1
故实数a的取值范围是(1,+∞)
故答案为:(1,+∞)
1.已知函数f(x)满足:当x≥4时,f(x)=(1/2)^x,当x0且a≠1)有两个零点,则实数a的取值范围是____
已知函数f(x)=x2-2ax+2,当x∈[-1,+∞]时,f(x)≥a恒成立,求a的取值范围
已知函数f﹙x﹚=(1+㏑x)/x (2)如果当x≥2时,不等式f(x)≥a/(x+2)恒成立,求实数a的取值范围
函数f(x)=x2+ax+3,当x属于R时,f(x)>=a恒成立,实数a的取值范围
已知函数f(x)=lnx+2x,g(x)=a(x2+x),若f(x)≤g(x)恒成立,则实数a的取值范围是______.
设函数f(x)=x2+2x+alnx,当t≥1时,不等式f(2t-1)≥2f(t)-3恒成立,则实数a的取值范围是___
已知函数f(x)=3x2-2x+1,g(x)=ax2,对任意的正实数x,f(x)≥g(x)恒成立,则实数a的取值范围是_
已知函数f(x)=2×9^x-3^x+a^2-a-3,当0≤x≤1时,f(x)>0恒成立,则实数a的取值范围为
已知函数f(x)=x^3-3x^2+1,当x∈[0,2]时,若不等式af '(x)+9a>x恒成立,求实数a的取值范围.
当x>0时,指数函数f(x)=(a-1)x<1恒成立,则实数a的取值范围是( )
已知函数f(x)=x∧3+ax∧2-a∧2x+2 若不等式2xlnx≤f'(x)+a∧2+1 恒成立 就实数a的取值范围
已知f(x)=x^2-3x,当x属于(0,+∞)时,不等式f(x)>ax-1恒成立,求a的取值范围.