作业帮 > 数学 > 作业

全等三角形类型在△ABC中,点D、E在边BC上,∠CAE=∠B.E是CD的中点,BD=AD且AD平分∠BAE,求证:BD

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 16:44:41
全等三角形类型
在△ABC中,点D、E在边BC上,∠CAE=∠B.E是CD的中点,BD=AD且AD平分∠BAE,求证:BD=AC.
全等三角形类型在△ABC中,点D、E在边BC上,∠CAE=∠B.E是CD的中点,BD=AD且AD平分∠BAE,求证:BD
我来我来...
证明:∵BD=AD,
∴∠BAD=∠B.
又∵AD平分∠BAE,
即∠DAE=∠BAD.
且∠CAE=∠B,
∴∠DAE=∠CAE.
∴△ACD为等腰三角形.
作线段DF⊥AB交AB于F.
则AC=AD(等腰三角形的性质),
DF=DE=CE(角平分线的性质).
在Rt△ACE和Rt△ADF中,
AC=AD(已证)
∠AFD=∠AED(已作)
DF=CE(已证)
∴Rt△ACE≌Rt△ADF(S·A·S)
∴AC=AD(对应边相等)
且AD=BD.
故有AC=BD.
从而得证.
【PS:其实实质是和楼上的解法一样】
好吧,我帮你吧:
证明:在△ABE和△ACD中有:
AB=AC(已知)
∠A=∠A(公共角)
CD=BE(已知)
∴△ABE≌△ACD(S·A·S)
即△BOD≌△COE.(注:其中点O为BE和CD的交点)
∴∠BDC=∠CEB.
即∠ADC=∠AEB.
从而得证.
再问: 好吧,十分感谢你的帮助,可是有一点,如果说∠B=∠C的话,才能用SAS,这里用的是不存在的定理SSA,不过,还是非常感谢你(^__^)
再答: = =