作业帮 > 数学 > 作业

lim(x--∞)(sinx-x^2)/(cosx+x^2)的极限

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 04:24:39
lim(x--∞)(sinx-x^2)/(cosx+x^2)的极限
lim(x--∞)(sinx-x^2)/(cosx+x^2)的极限
解析:
上下同时除以x²,得
lim(x→∞)(sinx/x²-1)/(cosx/x²+1)
因为x→∞,所以1/x²→0,即无穷小,又sinx与cosx为有界函数!所以sinx/x²与cosx/x²仍为无穷小!
所以原式=
lim(x→∞)(0-1)/(0+1)=-1.
方法技巧:假如这是选择题,你可以直接把sinx和cosx拿掉,就成了
lim(x→∞)(-1)/1=-1.
这是因为x→∞时,其它项都跑去无穷大了,只有sinx与cosx永远都在[-1,1]之间都圈圈,可以把它忽略不计!