作业帮 > 综合 > 作业

(2014•碑林区一模)已知函数f(x)=x+a2x,g(x)=x+lnx,其中a>0.

来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/17 15:01:38
(2014•碑林区一模)已知函数f(x)=x+
a
(2014•碑林区一模)已知函数f(x)=x+a2x,g(x)=x+lnx,其中a>0.
(1)∵h(x)=2x+
a2
x+lnx,其定义域为(0,+∞),∴h′(x)=2−
a2
x2+
1
x.
∵x=1是函数h(x)的极值点,∴h'(1)=0,即3-a2=0,∵a>0,∴a=
3.
经检验,当a=
3时,x=1是函数h(x)的极值点,∴a=
3.
(2)假设存在实数a,对任意的x1,x2∈[1,e]都有f(x1)≥g(x2)成立,
等价于对任意的x1,x2∈[1,e]时,都有[f(x)]min≥[g(x)]max,当x∈[1,e]时,g′(x)=1+
1
x>0.
∴函数g(x)=x+lnx在[1,e]上是增函数.∴[g(x)]max=g(e)=e+1.
∵f′(x)=1−
a2
x2=
(x+a)(x−a)
x2,且x∈[1,e],a>0,
①当0<a<1且x∈[1,e]时,f′(x)=
(x+a)(x−a)
x2>0,
∴函数f(x)=x+
a2
x在[1,e]上是增函数.∴[f(x)]min=f(1)=1+a2
由1+a2≥e+1,得  a≥
e,又0<a<1,∴a  不合题意.
②当1≤a≤e时,
若1≤x<a,则f′(x)=
(x+a)(x−a)
x2<0,若a<x≤e,则