定义函数fn(x)=(1+x)n-1,x>-2,n∈N+,其导函数记为fn′(x). ⑴求证:fn(x)≥nx;
已知函数f1(x)=(2x-1)/(x+1) 对于n∈N* 定义fn+1(x)=f1( fn(x)) 求fn(x)解析式
设f(x)=–2x+2,记f1(x)=f(x),fn(x)=f[fn-1(x)],n≥2,n∈N,则函数y=fn(x)的
已知定义在实数集上的函数fn(x)=xn,n∈N*,其导函数记为f′n(x),
若一系列函数{fn(x)}满足f1(x)=cosx,fn+1=f'n(x),
设f1(x)=2/(1+x),定义f(n+1)(x)=f1[fn(x)],an=[fn(0)-1]/[fn(0)+2]
已知函数fn(x)=(1+1/n)x(n属于N)的导函数为f`n(x) (1)比较fn`(0)与1/n的大小
函数数列{fn(x)}满足f1(1)/根号下(1+x^2) f(n+1)(x)=f1[fn(x)]求f2,f3
已知f1(x)=(2x-1)/(x+1),对于n=1,2,…,定义fn+1(x)=f1(fn(x)),若f35(x)=f
(2009•深圳二模)在如图所示的程序框图中,当n∈N*(n>1)时,函数fn(x)表示函数fn-1(x)的导函数,若输
讨论函数在区间的一致收敛性:fn(x)=(x^2+nx)/n,(i)x∈(-∞,+∞),(ii)x∈[a,b]
{an}是等差数列,设fn(x)=a1x a2x^2 ...anx^n,n是正偶数,且已知fn(1)=n^2,fn(-1
判断下列函数列在所给区间的一致收敛性 fn(x)=x/(1+(n^2)x^2),n=1,2,...,x∈(-∞,+∞)