作业帮 > 数学 > 作业

求证:不论x为何实数,多项式2x²-4x-1的值总大于x²-2x-4的值

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/06 05:56:32
求证:不论x为何实数,多项式2x²-4x-1的值总大于x²-2x-4的值
求证:不论x为何实数,多项式2x²-4x-1的值总大于x²-2x-4的值
证明:2x²-4x-1-(x²-2x-4)
=2x²-4x-1-x²+2x+4
=x²-2x+3
=x²-2x+1+2
=(x-1)²+2
不论x为何实数时,(x-1)²≥0
∴(x-1)²+2﹥0
∴2x²-4x-1-(x²-2x-4)﹥0
2x²-4x-1﹥x²-2x-4
即不论x为何实数,多项式2x²-4x-1的值总大于x²-2x-4的值