设f x 是定义在r上的偶函数,且在(0,正无穷)递增,则f(-丌),f(2),f(3)的大小比较为?
设f(x)是定义在R上的偶函数,则在区间(-无穷,0)单调递增,且满足f(-a^2+2a-5)
设f(X)是定义在R上的偶函数,且在【0,正无穷)上是减函数,则f(-3/4)与f(a^2-a+1)(a属于R)的大小关
设f(x)为定义在R上的偶数,且f(x)在[0,正无穷)为增函数,则f(-2),f(-π),f(3)的大小顺序是
设f(x)是定义在R上的偶函数,且它在[0,正无穷)上单调递增,若a=f(log根2 1/根3),b=f(log根3 1
已知f(x)是R上的偶函数,且在(0,正无穷)上单调递增,且f(x)
定义在R上的函数f(x)满足f(xy)=f(x)+f(y),且f(x)是区间(0,正无穷)上递增函数
已知f(x)是R上的偶函数,且在(0,正无穷)上单调递增,并且f(x)
定义在R上的偶函数f(x)满足f(x+1)=—f(x),且f(x)在闭区间【-1,0】上为递增函数,则比较f(3),f(
定义在R上的偶函数f(x),满足f(x+1)=-f(x),且在区间[-1,0]上为递增,则比较f(3)f(2)f(√2)
定义在R函数y=f(x)为偶函数,且在[0,正无穷大)上单调递减,是比较f(1),f(-2),f(3)的大小
已知函数f﹙x﹚是定义在R上的偶函数,且在区间[0,正无穷﹚上递增 ,若实数a满足 f﹙
已知函数f﹙x﹚是定义在R上的偶函数,且在区间[0,正无穷﹚上递增 ,若实数a满足 f﹙log以2为底a的对数﹚ + f