如图1,抛物线y=ax2-2ax-b(a<0)与x轴的一个交点为B(-1,0),与y轴的正半轴交于点C,顶点为D. (1
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 08:25:26
如图1,抛物线y=ax2-2ax-b(a<0)与x轴的一个交点为B(-1,0),与y轴的正半轴交于点C,顶点为D. (1)�
1),抛物线的对称轴:x=1,
与x轴的另一个交点B的坐标为;(3,0).
2),以AB为直径的⊙P的圆心为:(1,0),半径为:2,
所以圆的方程为:(x-1)^2+y^2=4,
故C点坐标为:(0,√3),
代入抛物线方程,得:b=√3,
将AC点坐标(-1,0),代入抛物线方程,得:a=b/3=√3/3,
所以抛物线的解析式为:y=-√3/3*x^2+2√3/3*x+√3.
3),直线AC,BC,AB的方程分别为:
y=√3x+√3,y=-√3/3*x+√3,y=0,
四边形MABC是平行四边形,则:
(1) MA//BC,MB//AC,
所以直线MA,MB的方程分别为:y=-√3/3*(x+1),y=√3*(x-3),
联立两方程,解得:x=2,y=-√3.
所以点M的坐标为:(2,-√3);
(2) MC//AB,MB//AC,
所以直线MC,MB的方程分别为:y=√3,y=√3*(x-3),
联立两方程,解得:x=4,y=√3.
所以点M的坐标为:(4,√3);
(3) MC//AB,MA//BC,
所以直线MC,MA的方程分别为:y=√3,y=-√3/3*(x+1),
联立两方程,解得:x=-4,y=√3.
所以点M的坐标为:(-4,√3);
综上可知:点M的坐标为:(2,-√3),(4,√3),或:(-4,√3).
与x轴的另一个交点B的坐标为;(3,0).
2),以AB为直径的⊙P的圆心为:(1,0),半径为:2,
所以圆的方程为:(x-1)^2+y^2=4,
故C点坐标为:(0,√3),
代入抛物线方程,得:b=√3,
将AC点坐标(-1,0),代入抛物线方程,得:a=b/3=√3/3,
所以抛物线的解析式为:y=-√3/3*x^2+2√3/3*x+√3.
3),直线AC,BC,AB的方程分别为:
y=√3x+√3,y=-√3/3*x+√3,y=0,
四边形MABC是平行四边形,则:
(1) MA//BC,MB//AC,
所以直线MA,MB的方程分别为:y=-√3/3*(x+1),y=√3*(x-3),
联立两方程,解得:x=2,y=-√3.
所以点M的坐标为:(2,-√3);
(2) MC//AB,MB//AC,
所以直线MC,MB的方程分别为:y=√3,y=√3*(x-3),
联立两方程,解得:x=4,y=√3.
所以点M的坐标为:(4,√3);
(3) MC//AB,MA//BC,
所以直线MC,MA的方程分别为:y=√3,y=-√3/3*(x+1),
联立两方程,解得:x=-4,y=√3.
所以点M的坐标为:(-4,√3);
综上可知:点M的坐标为:(2,-√3),(4,√3),或:(-4,√3).
如图,已知抛物线y=ax2-2ax-b(a>0)与x轴的一个交点为B(-1,0),与y轴的负半轴交于点C,顶点为D.
已知抛物线y=ax2-2ax-b(a>0)与x轴的一个交点为B(-1,0),与y轴负半轴交于点C,顶点为D.
已知抛物线y=-ax2+2ax+b与x轴的一个交点为A(-1,0)与y轴的正半轴交于点C如下图所示
如图,抛物线y=ax^2+bx+4与x轴的两个交点分别为A(-4,0)、B(2,0),与y轴交于点C,顶点为D.E(1,
如图,抛物线y=ax2+bx+c与x轴交于A,D两点,与y轴交于点C,抛物线的顶点B在第一象限,若点A的坐标为(1,0)
如图,已知抛物线y=ax2-2ax-b(a>0)与x轴的一个交点为B(-1,0),与y轴的负半轴交于点C
已知抛物线y=ax的平方-2ax-b (a>0)与x轴的一个交点为B(-1,0),与y轴的负半轴交于点C,顶点为D
如图,抛物线y=ax2+bx+4与x轴的两个交点分别为A(-4,0)、B(2,0),与y轴交点于C点,顶点为D
已知抛物线y=ax2+bx+c(a>0)与x轴的两个交点分别为A(-1,0),B(3,0),与y轴交点为点D,顶点为C
已知抛物线y=-ax^2 +2ax +b与X轴的一个交点为A(-1,0),与Y轴的正半轴交于点C.
如图,顶点坐标为(2,-1)的抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,3),与x轴交于A、B两点.
抛物线y=ax^2+4ax+1与x轴的一个交点为A(-1,0),抛物线与x轴的另一个交点为B,D是抛物线与y轴的交点,C