作业帮 > 数学 > 作业

如图1,抛物线y=ax2-2ax-b(a<0)与x轴的一个交点为B(-1,0),与y轴的正半轴交于点C,顶点为D. (1

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 08:25:26
如图1,抛物线y=ax2-2ax-b(a<0)与x轴的一个交点为B(-1,0),与y轴的正半轴交于点C,顶点为D. (1)�
如图1,抛物线y=ax2-2ax-b(a<0)与x轴的一个交点为B(-1,0),与y轴的正半轴交于点C,顶点为D. (1
1),抛物线的对称轴:x=1,
与x轴的另一个交点B的坐标为;(3,0).
2),以AB为直径的⊙P的圆心为:(1,0),半径为:2,
所以圆的方程为:(x-1)^2+y^2=4,
故C点坐标为:(0,√3),
代入抛物线方程,得:b=√3,
将AC点坐标(-1,0),代入抛物线方程,得:a=b/3=√3/3,
所以抛物线的解析式为:y=-√3/3*x^2+2√3/3*x+√3.
3),直线AC,BC,AB的方程分别为:
y=√3x+√3,y=-√3/3*x+√3,y=0,
四边形MABC是平行四边形,则:
(1) MA//BC,MB//AC,
所以直线MA,MB的方程分别为:y=-√3/3*(x+1),y=√3*(x-3),
联立两方程,解得:x=2,y=-√3.
所以点M的坐标为:(2,-√3);
(2) MC//AB,MB//AC,
所以直线MC,MB的方程分别为:y=√3,y=√3*(x-3),
联立两方程,解得:x=4,y=√3.
所以点M的坐标为:(4,√3);
(3) MC//AB,MA//BC,
所以直线MC,MA的方程分别为:y=√3,y=-√3/3*(x+1),
联立两方程,解得:x=-4,y=√3.
所以点M的坐标为:(-4,√3);
综上可知:点M的坐标为:(2,-√3),(4,√3),或:(-4,√3).