作业帮 > 数学 > 作业

已知圆O的半径为R,它的内接三角形ABC中,2R(sin^2A-sin^2C)=[(√2)a-b]sinB成立.求三角形

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/16 03:42:08
已知圆O的半径为R,它的内接三角形ABC中,2R(sin^2A-sin^2C)=[(√2)a-b]sinB成立.求三角形ABC面积S的最
大值
已知圆O的半径为R,它的内接三角形ABC中,2R(sin^2A-sin^2C)=[(√2)a-b]sinB成立.求三角形
根据正弦定理
a/sinA=b/sinB=c/sinC=2R
2R(sin² A-sin² C)=(√2*a-b)*sinB
a^2-c^2=√2ab-b^2
∴cosC=(a^2+b^2-c^2)/2ab=√2/2
∴sinC=√(1-cos^2C)=√2/2
S=1/2*absinC
=√2R^2sinAsinB
=√2R^2/2[cos(A-B)-cos(A+B)]
=√2R^2/2[cos(A-B)+cosC]
=√2R^2/2[cos(A-B)+√2/2]
≤√2R^2/2(1+√2/2)
=(1+√2)*R^2/2
S最大=a^2sinC/2=(√2+1)R^2/2
再问: =√2R^2sinAsinB
=√2R^2/2[cos(A-B)-cos(A+B)]
这步怎么算?
再答: 积化和差公式:
sinαsinβ=-1/2[cos(α+β)-cos(α-β)]
这里的角是A、B