作业帮 > 数学 > 作业

X〉0,求证 1/(X+1)〈ln(x+1)-lnx〈1/X 用拉格朗日证明.

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/16 05:40:51
X〉0,求证 1/(X+1)〈ln(x+1)-lnx〈1/X 用拉格朗日证明.
X〉0,求证 1/(X+1)〈ln(x+1)-lnx〈1/X
用拉格朗日证明.
X〉0,求证 1/(X+1)〈ln(x+1)-lnx〈1/X 用拉格朗日证明.
在(0,+∞)上任意取定一区间(x,x+1)
构造函数f(x)=lnx.,显然f(x)在(x,x+1)上必连续,由拉格朗日中值定理可知,存在ξ∈(x,x+1),
使得f(x+1)-f(x)=f'(ξ)(x+1-1)=f'(ξ)
又f'(x)=1/x,所以f'(ξ)=1/ξ.
因此f(x+1)-f(x)=f'(ξ)就化为
ln(x+1)-f(x)=1/ξ.①
因为ξ∈(x,x+1)
∴x<ξ<x+1,
∴1/(x+1)<1/ξ<1/x.将①式带入得
1/(x+1)<ln(x+1)-lnx<1/x.
原式得证.