抛物线:y=ax²-5x+4经过△ABC的三个顶点,已知BC//x轴,点A在x轴上,点C在y轴上,且AC=BC
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 05:55:11
抛物线:y=ax²-5x+4经过△ABC的三个顶点,已知BC//x轴,点A在x轴上,点C在y轴上,且AC=BC
求:1.抛物线的交点
2.写出A.B.C.三点的坐标并求出抛物线的解析式
3.探究:若点P是抛物线对称轴上且在x轴下方的动点,是否存在△pab是等腰三角形,若存在,求出所有符合条件的点P的坐标,不存在,请说明理由.
求:1.抛物线的交点
2.写出A.B.C.三点的坐标并求出抛物线的解析式
3.探究:若点P是抛物线对称轴上且在x轴下方的动点,是否存在△pab是等腰三角形,若存在,求出所有符合条件的点P的坐标,不存在,请说明理由.
1.2.因为BC//x轴,A点在x轴,
所以AC=AB,
因为AC=BC,所以三角形ABC为等腰三角形,
化成顶点式y=ax^-5x+4=a(x-5/2a)^+16a-25/4a
A的纵坐标为0,所以16a-25/4a=0,
解得a=25/16.
所以表达式为y=25/16(x-8/5)^
B.C点纵坐标为4,解得x1=16/5,x2=0,
所以A(8/5,0),B(16/5,4),C(0,4)
3.存在
AP=AB=BC=16/5,
所以P(8/5,-16/5)
解题过程太麻烦了,只能到这种程度了,
所以AC=AB,
因为AC=BC,所以三角形ABC为等腰三角形,
化成顶点式y=ax^-5x+4=a(x-5/2a)^+16a-25/4a
A的纵坐标为0,所以16a-25/4a=0,
解得a=25/16.
所以表达式为y=25/16(x-8/5)^
B.C点纵坐标为4,解得x1=16/5,x2=0,
所以A(8/5,0),B(16/5,4),C(0,4)
3.存在
AP=AB=BC=16/5,
所以P(8/5,-16/5)
解题过程太麻烦了,只能到这种程度了,
如图,抛物线y=ax²-5ax+4经过△ABC的三个顶点,点A,C分别在x轴,y轴上,且BC‖x轴,AC=BC
如图抛物线y=ax2-5ax=4经过三角形ABC的三个顶点,已知BC平行于X轴,点A在x轴上,点C在y轴上,且AC=BC
如图,抛物线y=ax²-5ax+4经过△ABC的三个顶点,已知BC‖x轴,点A在x轴上,点C在y
抛物线y=ax^-5ax+4经过三角形ABC的三个顶点,点A.C分别在x.y轴上,且BC//x轴,AC=BC.点P在对称
已知抛物线y=ax²+bx+c的顶点A在x轴上,于y轴的交点B(0,1),且b=-4ac
已知抛物线y=ax²+bx+c的顶点A在x轴上,与y轴交点为B(0,1)且b=-4ac
已知抛物线y=ax^2+bx+c的顶点在x轴上方,且经过点(-4,-5).它与y轴交与点C(0,3),与x轴交于A、B两
在三角形ABC中,已知点A(5,-2),B(7,3),且边AC的中点M在y轴上,边BC的中点N在x轴上,求(1)顶点C的
已知△ABC的三个顶点都在椭圆x^2/20+y^2/16=1上,A为椭圆短轴端点,AB⊥AC,AH⊥BC交BC于点H,求
已知在平面直角坐标系中,△ABC的顶点A(4,0),B(0,4),点C在X轴上,且BC=5
如图所示,点A在x轴上,点C在双曲线y=1÷x上,点B在双曲线y=3÷x上,且BC∥x轴,则△ABC的面积为?
已知抛物线的对称轴是直线x=3,顶点A在x轴上,且经过点B(1,-2),直线y=二分之一x+m与抛物线交于点B,C &n