在数学活动课上,小明提出一个问题:“如图,在四边形ABCD中,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,∠C
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/20 05:53:58
在数学活动课上,小明提出一个问题:“如图,在四边形ABCD中,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,∠CMD=35°,则∠MAB是多少度”大家经过了一番热烈的讨论交流之后,小雨第一个得出了正确结论,你知道他说的是( )
A. 20°
B. 35°
C. 55°
D. 70°
A. 20°
B. 35°
C. 55°
D. 70°
延长DM交AB的延长线于E,连接AM.
∵∠B=∠C=90°,M是BC的中点,
∴∠MBE=∠C,CM=BM,
又∵∠CMD=∠BME(对顶角相等),
∴△DCM≌△EBM(ASA),
∴CD=BE,∠CDM=∠BEM,DM=EM,
∵∠ADM=∠CDM,
∴∠ADM=∠BEM,
∴AD=AE,
又∵DM=EM,
∴AM⊥DE,∠BAM=∠DAM,
∴∠DAM=90°-∠ADM,∠CMD=90°-∠CDM=35°,
∴∠DAM=∠CDM=35°
∴∠BAM=35°.
故选B.
∵∠B=∠C=90°,M是BC的中点,
∴∠MBE=∠C,CM=BM,
又∵∠CMD=∠BME(对顶角相等),
∴△DCM≌△EBM(ASA),
∴CD=BE,∠CDM=∠BEM,DM=EM,
∵∠ADM=∠CDM,
∴∠ADM=∠BEM,
∴AD=AE,
又∵DM=EM,
∴AM⊥DE,∠BAM=∠DAM,
∴∠DAM=90°-∠ADM,∠CMD=90°-∠CDM=35°,
∴∠DAM=∠CDM=35°
∴∠BAM=35°.
故选B.
已知:如图,在四边形ABCD中,∠B=∠C=90°,M是BC的中点,DM 平分∠ADC
在数学活动课上,小明提出这样一个问题:如图,∠B=∠C=90°,E是BC的中点,DE平分∠ADC,∠CED=35°,则∠
在数学活动课上,小明提出这样一个问题:∠B=∠C=90°,E是BC的中点,DE平分∠ADC,如图,则下列说法正确的有几个
原题:在数学活动课上,小明提出这样一个问题:∠B=∠C=90°,E是BC的中点,DE平分∠ADC,则下列说法正确的有几个
已知:如图,在四边形ABCD中,∠B=∠C=90°,M是BC的中点,DM平分∠ADC.(1)若连接AM,则AM是否平分
在数学活动课上,小明提出这样一个问题:角B=角C=90度,E是BC的中点,DE平分角ADC角CED=35度 求∠EAB的
已知,如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC
在数学活动课上,小明提出这样一个问题:角B=角C=90度,E是BC的中点,DE平分角ADC,角CED=35度角EAB多少
数学活动课上小明提出这样一个问题,∠B=∠C=90°,E是BC的中点,DE平分∠ADC,DC=2,AB=3,如图,则AD
1.如图,∠B=∠C∠90°,M是BC的中点,DM平分∠ADC,求证:AM平分∠DAB
如图,∠B等于∠C等于90°,M是BC的中点,DM平分角ADC
如图,已知∠B=∠C=90°,M是BC的中点,DM平分∠ADC,请说明∠1=∠2.