一元函数积分学问题例题:设f(x)是[-a,a]上的连续函数,则∫a,-a(上限是a,下限是-a)f(-x)dx等于(
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 16:53:05
一元函数积分学问题
例题:设f(x)是[-a,a]上的连续函数,则∫a,-a(上限是a,下限是-a)f(-x)dx等于( )
A.0 B.2∫a,0(上限是a,下限是0)f(x)dx C.-∫a,-a(上限是a,下限是-a)f(x)dx
D.∫a,-a(上限是a,下限是-a)f(x)dx
令-x=t,则x=-t,dx=-dt,当x=-a,t=a,当x=a,t=-a,于是∫a,-af(-x)dx=∫-a,af(t)d(-t)=-∫-a,af(t)dt=∫a,-af(t)dt=∫a,-af(x)dx
第一步∫a,-af(-x)dx=∫-a,af(t)d(-t)相等吗?说当x=-a,t=a,当x=a,对解题有什么意义
例题:设f(x)是[-a,a]上的连续函数,则∫a,-a(上限是a,下限是-a)f(-x)dx等于( )
A.0 B.2∫a,0(上限是a,下限是0)f(x)dx C.-∫a,-a(上限是a,下限是-a)f(x)dx
D.∫a,-a(上限是a,下限是-a)f(x)dx
令-x=t,则x=-t,dx=-dt,当x=-a,t=a,当x=a,t=-a,于是∫a,-af(-x)dx=∫-a,af(t)d(-t)=-∫-a,af(t)dt=∫a,-af(t)dt=∫a,-af(x)dx
第一步∫a,-af(-x)dx=∫-a,af(t)d(-t)相等吗?说当x=-a,t=a,当x=a,对解题有什么意义
1、第一步∫a,-af(-x)dx=∫-a,af(t)d(-t)相等吗?
相等,因为一开始就设了令-x=t,则x=-t,你把x换成-t即可
2、说当x=-a,t=a,当x=a,t=-a是什么意思,对解题有什么意义
有意义,因为f(x)是[-a,a]上的连续函数,而当x=-a,t=a,当x=a,t=-a
即x∈[-a,a],t也属于[-a,a]
所以f(t)的也是在[-a,a]上的连续函数,这样就可以对f(t)在[-a,a]上进行积分
相等,因为一开始就设了令-x=t,则x=-t,你把x换成-t即可
2、说当x=-a,t=a,当x=a,t=-a是什么意思,对解题有什么意义
有意义,因为f(x)是[-a,a]上的连续函数,而当x=-a,t=a,当x=a,t=-a
即x∈[-a,a],t也属于[-a,a]
所以f(t)的也是在[-a,a]上的连续函数,这样就可以对f(t)在[-a,a]上进行积分
设f(x)是以T为周期的连续函数,证明:∫(a为下限,a+T为上限)f(x)dx=∫f(x)dx (上限是T,下限是0)
设f(x)是定义在(-∞,∞)上的周期为T的连续函数,试证明:对任意的常数a,都有∫〈上限a T下限a〉f(x)dx=∫
f(x)为[-a,a]上的连续函数,则定积分∫f(-x)dx= (积分上限a下限-a)
设f(x)是以l为周期的连续函数,证明∫f(x)dx(上限为a+l,下限为a)=∫f(x)dx(上l下0) 即∫f(x)
设f(x)为连续函数,求d/dx∫(下限a上限b)f(x+y)dy
设f(x)在区间[a,b]上连续,证明∫上限a,下限b.f(x)dx=∫上限a,下限bf(a+b-x)dx.
一道定积分证明题!设f(x),g(x)为连续函数,试证明(上限a 下限0 )∫x{f[g(x)+f[g(a-x)]}dx
设f(x)是以T为周期的连续函数,∫(下限a,上限x)f(t)dt以T为周期,求∫(下限0,上限T)f(x)dx=?
上限是x,下限是a的f(x)dx的定积分怎么求导?
设f(x)是偶函数,即f(-x)=f(x),用定积分的几何意义说明下式成立:∫上限a,下限-a f(x)dx=2∫上限a
求定积分∫x[f(x)+f(-x)]dx,积分上限是a,积分下限是 -a
设f(x)是连续函数 则 ∫f(x)dx-∫f(a+b-x)dx= 上标b 下标a