(2010•扬州二模)如图,在平面直角坐标系xoy中,点A在y轴上坐标为(0,3),点B在x轴上坐标为(10,0),BC
来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/16 13:17:20
(2010•扬州二模)如图,在平面直角坐标系xoy中,点A在y轴上坐标为(0,3),点B在x轴上坐标为(10,0),BC⊥x轴,直线AC交x轴于M,tan∠ACB=2.
(1)求直线AC的解析式;
(2)点P在线段OB上,设OP=x,△APC的面积为S.请写出S关于x的函数关系式及自变量x的取值范围;
(3)探索:在线段OB上是否存在一点P,使得△APC是直角三角形?若存在,求出x的值,若不存在,请说明理由;
(4)当x=4时,设顶点为P的抛物线与y轴交于D,且△PAD是等腰三角形,求该抛物线的解析式.(直接写出结果)
(1)求直线AC的解析式;
(2)点P在线段OB上,设OP=x,△APC的面积为S.请写出S关于x的函数关系式及自变量x的取值范围;
(3)探索:在线段OB上是否存在一点P,使得△APC是直角三角形?若存在,求出x的值,若不存在,请说明理由;
(4)当x=4时,设顶点为P的抛物线与y轴交于D,且△PAD是等腰三角形,求该抛物线的解析式.(直接写出结果)
(1)∵OA∥BC,
∴∠OAM=∠ACB,
∵tan∠ACB=2,
∴tan∠OAM=2,
∴OM=2OA=6,
∴BM=OM+OB=6+10=16.
∴BC=0.5BM=8,
∴C(10,8).
设直线AC的解析式为y=kx+b,
把A(0,3),C(10,8)两点的坐标代入,
得b=3,10k+b=8,
∴k=0.5.
∴直线AC的解析式为y=0.5x+3;
(2)∵△APC的面积=△MPC的面积-△PAM的面积=
1
2(x+6)×8-
1
2(x+6)×3=2.5x+15,
∴S=2.5x+15.
∵点P在线段OB上,
∴0≤x≤10;
(3)假设在线段OB上存在一点P,使得△APC是直角三角形.
由于∠ACP≤∠ACB<90°,那么有两种情况:①∠PAC=90°;②∠APC=90°.
①如果∠PAC=90°,由勾股定理,可知AP2+AC2=PC2,
∴OP2+OA2+OB2+(BC-OA)2=PB2+BC2,
∴x2+32+102+(8-3)2=(10-x)2+82,
解得x=1.5;
②如果∠APC=90°,
在△AOP与△PBC中,∵∠AOP=∠PBC=90°,∠OAP=∠BPC=90°-∠OPA,
∴△AOP∽△PBC,
∴OA:BP=OP:BC,
∴3:(10-x)=x:8,
解得x=4或6.
综上,可知x=1.5或4或6;
(4)根据题意得:P(4,0);
若PA=AD,则D(0,8)或(0,-2),
则此时抛物线为:y=
7
16(x-4)2或y=-
1
16(x-4)2;
若PA=PD,则点D(0,-3),
则此时抛物线为:y=-
3
16(x-4)2;
若AD=PD,则(0,-
7
6),
此时抛物线为:y=-
7
96(x-4)2.
故抛物线为:y=
7
16(x-4)2或y=-
1
16(x-4)2,y=-
3
16(x-4)2,y=-
7
96(x-4)2.
∴∠OAM=∠ACB,
∵tan∠ACB=2,
∴tan∠OAM=2,
∴OM=2OA=6,
∴BM=OM+OB=6+10=16.
∴BC=0.5BM=8,
∴C(10,8).
设直线AC的解析式为y=kx+b,
把A(0,3),C(10,8)两点的坐标代入,
得b=3,10k+b=8,
∴k=0.5.
∴直线AC的解析式为y=0.5x+3;
(2)∵△APC的面积=△MPC的面积-△PAM的面积=
1
2(x+6)×8-
1
2(x+6)×3=2.5x+15,
∴S=2.5x+15.
∵点P在线段OB上,
∴0≤x≤10;
(3)假设在线段OB上存在一点P,使得△APC是直角三角形.
由于∠ACP≤∠ACB<90°,那么有两种情况:①∠PAC=90°;②∠APC=90°.
①如果∠PAC=90°,由勾股定理,可知AP2+AC2=PC2,
∴OP2+OA2+OB2+(BC-OA)2=PB2+BC2,
∴x2+32+102+(8-3)2=(10-x)2+82,
解得x=1.5;
②如果∠APC=90°,
在△AOP与△PBC中,∵∠AOP=∠PBC=90°,∠OAP=∠BPC=90°-∠OPA,
∴△AOP∽△PBC,
∴OA:BP=OP:BC,
∴3:(10-x)=x:8,
解得x=4或6.
综上,可知x=1.5或4或6;
(4)根据题意得:P(4,0);
若PA=AD,则D(0,8)或(0,-2),
则此时抛物线为:y=
7
16(x-4)2或y=-
1
16(x-4)2;
若PA=PD,则点D(0,-3),
则此时抛物线为:y=-
3
16(x-4)2;
若AD=PD,则(0,-
7
6),
此时抛物线为:y=-
7
96(x-4)2.
故抛物线为:y=
7
16(x-4)2或y=-
1
16(x-4)2,y=-
3
16(x-4)2,y=-
7
96(x-4)2.
在平面直角坐标系xOy中,四边形ABCD为菱形,点A的坐标为(0,1),点D在y轴上,经过 点B的
如图,在平面直角坐标系中,0为坐标原点,三角形ABC的边BC在x轴上,点B的坐标是(-5,0),点A在y的正半轴上,点C
如图,在平面直角坐标系xOy中,一次函数 的图象与x轴交于点A,与y轴交于点B,点C的坐标为(3,0),连结BC. (1
如图,在平面直角坐标系xOy中,一次函数 的图象与x轴交于点A,与y轴交于点B,点C的坐标为(3,0),连接BC。 (1
如图,平面直角坐标系中,点A、B分别在x、y轴上,点B坐标为(0,1),∠BAO=30°.
如图,平面直角坐标系中,点A、B分别在x、y轴上,点B坐标为(0,1),∠BAO=30°
如图,矩形OABC在平面直角坐标系内(O为坐标原点),点A在x轴上,点C在Y轴上,点B的坐标为(-2,m),点E是BC的
如图,在平面直角坐标系中,点A,C的坐标分别为(-1,0)(0,负根号3)点B在X轴上
如图,在平面直角坐标系xOy中,直径为10的圆E交x轴于点A,B,交y轴于点C,D,且点A,B的坐标分别为A(-2,0)
如图,在平面直角坐标系xOy中,直径为10的⊙E交x轴于点A,B,交y轴于点C,D,且点A,B的坐标分别为A(-2,0)
如图,在平面直角坐标系xOy中,四边形ABC为菱形,点A的坐标为(0,1),点D在y轴上,经过点B的直线y=-x+4与A
1.如图1,在平面直角坐标系xOy中,点A,B坐标分别为(8,4),(0,4),线段CD在于x轴上,CD=3,点C从原点