作业帮 > 数学 > 作业

已知向量m=(1,1),向量n与向量m的夹角为3/4π,且m·n=-1 若向量n与向量q=(1,0)的夹角为π/2,p=

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/23 21:46:44
已知向量m=(1,1),向量n与向量m的夹角为3/4π,且m·n=-1 若向量n与向量q=(1,0)的夹角为π/2,p=(c
已知向量m=(1,1),向量n与向量m的夹角为3/4π,且m·n=-1
若向量n与向量q=(1,0)的夹角为π/2,p=(cosA,2cos^2 C/2),其中A,B,C为三角形ABC的三个内角,且2B=A+C,求|n+p|的取值范围
已知向量m=(1,1),向量n与向量m的夹角为3/4π,且m·n=-1 若向量n与向量q=(1,0)的夹角为π/2,p=
设向量n(x,y)
mn=-1,所以x+y=-1.(1)
mn=|m||n|cosa=√2*√(x^2+y^2)*cos3/4π=-1
即x^2+y^2=1...(2)
(1)式与(2)式组合,得x=0或x=-1,则相应的y=-1或0
所以向量n=(0,-1)或(-1,0)
向量n与向量q=(1,0)的夹角为π/2,所以n的方向为y轴付方向,模值为1,所以n=(0,-1);
由2B=A+C,知b=π/3,A+C=2π/3.0