作业帮 > 数学 > 作业

设向量a=(1,cos2α),b=(2,1),c=(4sinα,1),

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 10:55:44
设向量a=(1,cos2α),b=(2,1),c=(4sinα,1),
d=(1/2sinα,1)其中α属于(0.π/4)
求向量a*b-c*d的取值范围
若函数f(x)=绝对值(x-1),比较f(向量ab)与f(向量cd)的大小
设向量a=(1,cos2α),b=(2,1),c=(4sinα,1),
a·b=(1,cos(2α))·(2,1)=2+cos(2α)
c·d=(4sinα,1)·(sinα/2,1)=2sinα^2+1
1
a·b-c·d=2+cos(2α)-2sinα^2-1=1+cos(2α)-2sinα^2
=cos(2α)+cos(2α)=2cos(2α)
α∈(0,π/4),即:2α∈(0,π/2)
故:2cos(2α)∈(0,2),即:a·b-c·d∈(0,2)
2
f(a·b)=|2+cos(2α)-1|=2|cosα^2|=2cosα^2
f(c·d)=|2sinα^2+1-1|=2|sinα^2|=2sinα^2
α∈(0,π/4),0f(c·d)