(2014•江西模拟)正方形ABCD中,E是CD边上一点,
来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/17 14:02:47
(2014•江西模拟)正方形ABCD中,E是CD边上一点,
(1)将△ADE绕点A按顺时针方向旋转,使AD、AB重合,得到△ABF,如图1所示.观察可知:与DE相等的线段是______,∠AFB=∠______
(2)如图2,正方形ABCD中,P、Q分别是BC、CD边上的点,且∠PAQ=45°,试通过旋转的方式说明:DQ+BP=PQ
(3)在(2)题中,连接BD分别交AP、AQ于M、N,你还能用旋转的思想说明BM2+DN2=MN2.
(1)将△ADE绕点A按顺时针方向旋转,使AD、AB重合,得到△ABF,如图1所示.观察可知:与DE相等的线段是______,∠AFB=∠______
(2)如图2,正方形ABCD中,P、Q分别是BC、CD边上的点,且∠PAQ=45°,试通过旋转的方式说明:DQ+BP=PQ
(3)在(2)题中,连接BD分别交AP、AQ于M、N,你还能用旋转的思想说明BM2+DN2=MN2.
(1)∵△ADE绕点A按顺时针方向旋转,使AD、AB重合,得到△ABF,
∵DE=BF,∠AFB=∠AED.
故答案为BF,AED;
(2)将△ADQ绕点A按顺时针方向旋转90°,则AD与AB重合,得到△ABE,如图2,
则∠D=∠ABE=90°,即点E、B、P共线,∠EAQ=∠BAD=90°,AE=AQ,BE=DQ,
∵∠PAQ=45°,
∴∠PAE=45°,
∴∠PAQ=∠PAE,
在△APE和△APQ中
∵
AE=AQ
∠PAE=∠PAQ
AP=AP,
∴△APE≌△APQ,
∴PE=PQ,
而PE=PB+BE=PB+DQ,
∴DQ+BP=PQ;
(3)∵四边形ABCD为正方形,
∴∠ABD=∠ADB=45°,
如图,将△ADN绕点A按顺时针方向旋转90°,则AD与AB重合,得到△ABK,
则∠ABK=∠ADN=45°,BK=DN,AK=AN,
与(2)一样可证明△AMN≌△AMK得到MN=MK,
∵∠MBA+∠KBA=45°+45°=90°,
∴△BMK为直角三角形,
∴BK2+BM2=MK2,
∴BM2+DN2=MN2.
∵DE=BF,∠AFB=∠AED.
故答案为BF,AED;
(2)将△ADQ绕点A按顺时针方向旋转90°,则AD与AB重合,得到△ABE,如图2,
则∠D=∠ABE=90°,即点E、B、P共线,∠EAQ=∠BAD=90°,AE=AQ,BE=DQ,
∵∠PAQ=45°,
∴∠PAE=45°,
∴∠PAQ=∠PAE,
在△APE和△APQ中
∵
AE=AQ
∠PAE=∠PAQ
AP=AP,
∴△APE≌△APQ,
∴PE=PQ,
而PE=PB+BE=PB+DQ,
∴DQ+BP=PQ;
(3)∵四边形ABCD为正方形,
∴∠ABD=∠ADB=45°,
如图,将△ADN绕点A按顺时针方向旋转90°,则AD与AB重合,得到△ABK,
则∠ABK=∠ADN=45°,BK=DN,AK=AN,
与(2)一样可证明△AMN≌△AMK得到MN=MK,
∵∠MBA+∠KBA=45°+45°=90°,
∴△BMK为直角三角形,
∴BK2+BM2=MK2,
∴BM2+DN2=MN2.
如图所示,正方形ABCD中,点E是CD边上一点,连接AE,交对角线BD于点F,连接CF,则图中全等三角形共有( )
已知如下图,正方形ABCD中,E是CD边上的一点,F为BC延长线上的一点,CE=CF
(2010•宝安区三模)如图所示,在边长为4的正方形ABCD中,E是CD边上的一点,将△ADE绕点A顺时针旋转90°至△
在正方形ABCD中,F是CD中点,E是BC边上一点,且AE=DC+CE,求证:AF平分∠DAE
E是正方形ABCD中CD边上的一点,△ADE绕点A旋转后与△ABF重合,判断△AEF的类型,并说明理由
如图所示,正方形ABCD中,点E是CD边上一点,连结AE,交对角线BD于 F,连结CF,则图中全等三角形共有
在正方形abcd中,e是bc边上一点,af平分角EAD交cd于点f.求证ae=be+df
正方形ABCD中E为AD边上的中点过A作AF垂直BE交CD边于F,M是AD边上的一点,且有BM=DM+CD.求证:角MB
如图正方形ABCD中,E为AD边上的中点,过点A作AF⊥BE,交CD边于F,M是AD边上一点且有BM=DM+CD,
如图正方形ABCD中,E为AD边上的中点,过A作AF⊥BE,交CD边于F,M是AD边上一点,且有BM=DM+CD.
正方形ABCD中E为AD边上的中点,过A作AF⊥BE,交CZD于F,M是AD边上一点,且有BM=DM+CD.
(2010•淄博)已知:如图,E为正方形ABCD的边BC延长线上的点,F是CD边上一点,且CE=CF,连接DE,BF.求