如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE、AD与BE交于点O,AD
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 22:04:39
如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE、AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①∠AOB=60°;②PQ∥AE;③AP=BQ;④DE=DP ⑤PQ2=PO•QE;恒成立的结论有______(把你认为正确的序号都填上).
∵△ABC、△DCE为正三角形,
∴∠ACB=∠DCE=60°,AC=BC,DC=EC,
∴∠ACB+∠BCD=∠DCE+∠BCD,
∴∠ACD=∠BCE,
∴△ACD≌△BCE(SAS),
∴∠CAD=∠CBE,
∴∠AOB=∠CAD+∠CEB=∠CBE+∠CEB,
∵∠ACB=∠CBE+∠CEB=60°,
∴∠AOB=60°,故①正确;
∵△ACD≌△BCE(已证),
∴∠CAD=∠CBE,
∵∠ACB=∠ECD=60°(已证),
∴∠BCQ=180°-60°×2=60°,
∴∠ACB=∠BCQ=60°,
在△ACP与△BCQ中,
∠CAP=∠CBQ
AC=BC
∠ACP=∠BCQ=60° ,
∴△ACP≌△BCQ(ASA),
∴AP=BQ,故③正确;PC=QC,
∴△PCQ是等边三角形,
∴∠CPQ=60°,
∴∠ACB=∠CPQ,
∴PQ∥AE,故②正确;
∵∠DCE=∠BCA=60°,∴∠DCP=60°,
又∵∠DPC=∠DAC+∠BCA,∠BCA=60°,
∴∠DPC>60°=∠DCP,
∴DC>DP,
∵DC=DE,
∴DE>DP,
故DP不等于DE,故④错误;
∵∠AOB=∠ECQ=60°,∠OAB=∠CDA=∠CEQ,
∴△OAB∽△CEQ,
∴OB:CQ=AB:EQ,(1)
∵∠POB=∠PCA=60°,∠OPB=∠CPA,
∴△OPB∽△CPA,
∴OP:CP=OB:CA,(2)
∵CQ=CP=PQ,AB=CA,
∴将(1)×(2),得
(OB×OP):(PQ2)=(AB×OB):(EQ×CA),
∴PQ2×AB×OB=OB×OP×EQ×CA,
∴PQ2=OP×EQ,故⑤正确.
故答案①②③⑤.
∴∠ACB=∠DCE=60°,AC=BC,DC=EC,
∴∠ACB+∠BCD=∠DCE+∠BCD,
∴∠ACD=∠BCE,
∴△ACD≌△BCE(SAS),
∴∠CAD=∠CBE,
∴∠AOB=∠CAD+∠CEB=∠CBE+∠CEB,
∵∠ACB=∠CBE+∠CEB=60°,
∴∠AOB=60°,故①正确;
∵△ACD≌△BCE(已证),
∴∠CAD=∠CBE,
∵∠ACB=∠ECD=60°(已证),
∴∠BCQ=180°-60°×2=60°,
∴∠ACB=∠BCQ=60°,
在△ACP与△BCQ中,
∠CAP=∠CBQ
AC=BC
∠ACP=∠BCQ=60° ,
∴△ACP≌△BCQ(ASA),
∴AP=BQ,故③正确;PC=QC,
∴△PCQ是等边三角形,
∴∠CPQ=60°,
∴∠ACB=∠CPQ,
∴PQ∥AE,故②正确;
∵∠DCE=∠BCA=60°,∴∠DCP=60°,
又∵∠DPC=∠DAC+∠BCA,∠BCA=60°,
∴∠DPC>60°=∠DCP,
∴DC>DP,
∵DC=DE,
∴DE>DP,
故DP不等于DE,故④错误;
∵∠AOB=∠ECQ=60°,∠OAB=∠CDA=∠CEQ,
∴△OAB∽△CEQ,
∴OB:CQ=AB:EQ,(1)
∵∠POB=∠PCA=60°,∠OPB=∠CPA,
∴△OPB∽△CPA,
∴OP:CP=OB:CA,(2)
∵CQ=CP=PQ,AB=CA,
∴将(1)×(2),得
(OB×OP):(PQ2)=(AB×OB):(EQ×CA),
∴PQ2×AB×OB=OB×OP×EQ×CA,
∴PQ2=OP×EQ,故⑤正确.
故答案①②③⑤.
如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE、AD与BE交于点O,
如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交与点O
C为线段AE上一动点(不与点A,E重合)在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交与点O,
如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与B
如图,C为线段AE上一动点(不与点A、E重合).在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于H,AD与BC
C是线段AE上的动点(不与A,E重合),在AE同侧分别作正三角形ABC,CDE,
C为线段AE上的一点,分别以AC,CE为边在AE的同侧作等边 △ABC和等边△CDE,连接AD,BE交于点F.
如图,在正三角形ABC中,点D,E分别在边BC,CA上,使得CD=AE,AD与BE交于点P,BQ⊥AD于Q,则QP/PB
如图,在正方形ABCD中,点E是CD边上一动点(点E不与端点C、D重合)AE的垂直平分线FP交AD于F,交CB于G,交A
几何证明 如图,在正三角形ABC中,点D,E分别在边BC,CA上,使得CD=AE,AD与BE相交于点P,BQ垂直于AD于
已知,如图,在正三角形ABC中,D,E分别是BC,AC上一点,AE=CD,AD与BE交于点F,AF=2分之1
在矩形ABCD中,AB=5,AD=3,E是CD上一动点,以AE为直径的圆O与AB交于点F,过点F作FG垂直BE于点G.