在矩形ABCD中,AB=5,AD=3,E是CD上一动点,以AE为直径的圆O与AB交于点F,过点F作FG垂直BE于点G.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 11:53:58
在矩形ABCD中,AB=5,AD=3,E是CD上一动点,以AE为直径的圆O与AB交于点F,过点F作FG垂直BE于点G.
1) 求tanEAB的值.
证明FG是圆O的切线.
2)BE与圆O是否相切,如果是,请求DE的长;如果不是,请说明理由.
在矩形ABCD中,AB=5,AD=3,E是CD上一动点,以AE为直径的圆O与AB交于点F,过点F作FG垂直BE于点G.
1) 如果E为CD的中点
求tanEAB的值。
证明FG是圆O的切线。
2)BE与圆O是否相切,如果是,请求DE的长;如果不是,请说明理由。
1) 求tanEAB的值.
证明FG是圆O的切线.
2)BE与圆O是否相切,如果是,请求DE的长;如果不是,请说明理由.
在矩形ABCD中,AB=5,AD=3,E是CD上一动点,以AE为直径的圆O与AB交于点F,过点F作FG垂直BE于点G.
1) 如果E为CD的中点
求tanEAB的值。
证明FG是圆O的切线。
2)BE与圆O是否相切,如果是,请求DE的长;如果不是,请说明理由。
您确定题目没有问题吗?第一问就很奇怪呀!
因为E是CD上一动点,故设:DE为x.则:tanEAB=tanAED=AD/DE=3/x,这不是一个定值呀!
还有,假设FG是圆O的切线成立,则:OF⊥FG,又因为FG⊥BE,所以OF‖BE,又AO=OE,那么AF=FB,即:F是AB的中点.而F点显然是随E点而移动的动点,这与题目矛盾!
这真的是很奇怪呀!
啊,这就对了嘛~
1) 如果E为CD的中点,所以CE=DE=1/2CD=1/2AB=2.5,所以tanEAB=tanAED=AD/DE=1.2
由于F为圆上一点,故要证FG是圆O的切线,只需证FG⊥OF即可.
连接EF,则∠AFE为直角,又因为四边形ABCD为矩形,所以∠FAD、∠ADE均为直角,AB‖CD,即AF‖DE.所以四边形ADEF为矩形,故AF=DE,故F点为AB中点.又AO=OE,所以OF‖BE,又因为FG⊥BE,所以FG⊥OF.
2)因为E是CD上一动点,故设:DE为x.假设存在这样的点E使得BE与圆O相切.那么,∠AEB为直角,故∠AED+∠BEC=90°,又∠DAE+∠AED=90°,所以∠DAE=∠BEC,又∠ADE=∠ECB=90°,所以△ADE∽△ECB,所以AD/DE=EC/CB,即:3/x=(5-x)/3,即:x*2-5x+9=0,由于△=5*2-4×9<0,故无解,所以不存在这样的点E.
因为E是CD上一动点,故设:DE为x.则:tanEAB=tanAED=AD/DE=3/x,这不是一个定值呀!
还有,假设FG是圆O的切线成立,则:OF⊥FG,又因为FG⊥BE,所以OF‖BE,又AO=OE,那么AF=FB,即:F是AB的中点.而F点显然是随E点而移动的动点,这与题目矛盾!
这真的是很奇怪呀!
啊,这就对了嘛~
1) 如果E为CD的中点,所以CE=DE=1/2CD=1/2AB=2.5,所以tanEAB=tanAED=AD/DE=1.2
由于F为圆上一点,故要证FG是圆O的切线,只需证FG⊥OF即可.
连接EF,则∠AFE为直角,又因为四边形ABCD为矩形,所以∠FAD、∠ADE均为直角,AB‖CD,即AF‖DE.所以四边形ADEF为矩形,故AF=DE,故F点为AB中点.又AO=OE,所以OF‖BE,又因为FG⊥BE,所以FG⊥OF.
2)因为E是CD上一动点,故设:DE为x.假设存在这样的点E使得BE与圆O相切.那么,∠AEB为直角,故∠AED+∠BEC=90°,又∠DAE+∠AED=90°,所以∠DAE=∠BEC,又∠ADE=∠ECB=90°,所以△ADE∽△ECB,所以AD/DE=EC/CB,即:3/x=(5-x)/3,即:x*2-5x+9=0,由于△=5*2-4×9<0,故无解,所以不存在这样的点E.
在矩形ABCD中,AB=5,AD=3,E是CD上一动点,以AE为直径的圆O与AB交于点F,过点F作FG垂直BE于点G.
如图,矩形ABCD中,AB=5,AD=3.点E是CD上的动点,以AE为直径的⊙O与AB交于点F,过点F作FG⊥BE于点G
如图,矩形ABCD中,AB=5,AD=3=,点E是CD上的动点,以AE为直径的圆O与AB交与点F,过点F作FG⊥BE于点
如图 ,矩形ABCD中,AB=5,AD=3.点E是CD上的动点,以AE为直径的⊙O与AB交于点F,过点F作FG⊥BE于点
矩形ABCD中,AB=5,AD=3,点E是CD上的动点,以AE为直径的圆O与AB交于点F
矩形ABCD AB=5 AD=3 E是CD上动点 以AE为直径的圆O与AB交点F FG⊥BE于G
如图,已知矩形abcd中,ab=10,ad=4,点e为cd边上的一个动点,连接ae,be,以ae为直径作圆,交ab于点f
如图,在矩形ABCD中,E是DC的中点,BE⊥AC交AC于点F,过点F作FG∥AB交AE于点G,求证:AG²=
如图,在矩形ABCD中,AB=6,BC=10.点E为线段BC上一动点,线段AE与以AD为直径的⊙O相交于点F,连接DF.
如图,在矩形ABCD中,AB=6,BC=10,点E为线段BC上一动点,线段AE与以AD为直径的圆O交与点F连接DF
以三角形ABC的BC边为直径的圆O交AB于G,AD切圆O于D,在AB上取AE=AD,作EF垂直AB且与AC延长线交于点F
如图,在正方形ABCD中,AB=4,E为CD上一动点,AE交BD于F,过F作FH⊥AE交BC于H,过H作GH⊥BD于G,