已知椭圆x^2 /a^2+y^2/b^2=1(a>b>0)的一个顶点为B(0,-2),斜率为1的直线过它的右焦点F且与椭
来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/17 15:06:57
已知椭圆x^2 /a^2+y^2/b^2=1(a>b>0)的一个顶点为B(0,-2),斜率为1的直线过它的右焦点F且与椭圆相交于B,P
①求椭圆C的方程
②求线段PB的长
①求椭圆C的方程
②求线段PB的长
①求椭圆C的方程
显然得出b=2,
由于直线BP的斜率K=1,
故作图可知c=b=2,a=2√2
椭圆C的方程为x^2 /8+y^2/4=1
②求线段PB的长
PB方程为y=x-2
设P(x,y),过F作FM垂直于x轴,垂足M
由焦半径公式得|FP|= a-ex=2√2-√2/2x
|FM|=x-c=x-2
因∠PFM=45°
则|PF|=√2|FM|
即2√2-√2/2x=√2(x-2)
x=8/3
所以|FP|= 2√2-√2/2*8/3= 2√2-4√2/3=2√2/3
|BP|=|BF|+|FP|=2√2+2√2/3=8√2/3
显然得出b=2,
由于直线BP的斜率K=1,
故作图可知c=b=2,a=2√2
椭圆C的方程为x^2 /8+y^2/4=1
②求线段PB的长
PB方程为y=x-2
设P(x,y),过F作FM垂直于x轴,垂足M
由焦半径公式得|FP|= a-ex=2√2-√2/2x
|FM|=x-c=x-2
因∠PFM=45°
则|PF|=√2|FM|
即2√2-√2/2x=√2(x-2)
x=8/3
所以|FP|= 2√2-√2/2*8/3= 2√2-4√2/3=2√2/3
|BP|=|BF|+|FP|=2√2+2√2/3=8√2/3
已知椭圆C:x*2/a*2+y*2/b*2=1(a>b>0)的离心率为√3/2,过右焦点F且斜率为k(k>0)的直线与
已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的离心率为1/2,长轴长为4,M为右顶点,过右焦点F的直线与椭圆
过椭圆C x^2/4b^2+y^2/b^2=1(b>0)右焦点F且斜率为k的直线与C相交与A、B两点,若向量AF=3向量
已知椭圆Cx^2/a^2+y^2/b^2=1,(a>b>0)离心率√3/2,过右焦点F,且斜率为K的直线与椭圆交于AB,
已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为(√3)/2,过右焦点F且斜率为k(k>0)的直线
已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为二分之根号三,过右焦点F且斜率为K(k>0)的直线
椭圆C x^2/a^2+y^2/b^2=1 (a>b>0)的离心率为√3/2,过右焦点F且斜率为k k>0的直线交椭圆A
过椭圆C:x^2/6+y^2/2=1的右焦点F作斜率为k(k>0)的直线L与椭圆交于A.B两点.且坐标原点O到直线L的距
已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左焦点为F,右顶点为A,点B在椭圆上,且BF垂直X轴,直线AB
已知椭圆x^2/a^2+y^2/b^2=1 a大于b大于0 的左焦点为F,右顶点为A,点B在椭圆上,且BF垂直于X 直线
过椭圆 C: x 2 6 + y 2 2 =1 的右焦点F作斜率为k(k>0)的直线l与椭圆交于A、B两点,且坐标原点O
设椭圆x 2/a 2+y 2/b 2=1(a>b>0)的右焦点F,斜率为1的直线过F,并交椭圆于A,B点,点O为坐标原点