已知f(x)对一切实数x,y都有f(x+y)=f(x)+f(y),f(1)=2,当x>0时,f(x)<0
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 19:03:06
已知f(x)对一切实数x,y都有f(x+y)=f(x)+f(y),f(1)=2,当x>0时,f(x)<0
(1)证明f(x)为奇函数;
(2)证明f(x)为R上的减函数;
(3)解不等式f(x-1)-f(1-2x-x2)<4.
(1)证明f(x)为奇函数;
(2)证明f(x)为R上的减函数;
(3)解不等式f(x-1)-f(1-2x-x2)<4.
(1)证明,依题意取x=y=0有f(0)=2f(0),
∴f(0)=0,…1分
又取y=-x可得f(x-x)=f(x)+f(-x)=f(0)(x∈R),即f(x)+f(-x)=0(x∈R)
∴f(-x)=-f(x)(x∈R)…3分
由x的任意性可知f(x)为奇函数…4分
(2)证明:设x1<x2,则x2=x1+(x2-x1),…5分
∴f(x1)-f(x2)=f(x1)-f[x1+(x2-x1)]=f(x1)-[f(x1)+f(x2-x1)]=-f(x2-x1)…7分
∵x2-x1>0,∴f(x2-x1)<0,
∴f(x1)-f(x2)>0,即f(x1)>f(x2),
∴f(x)为R上的减函数;
(3)依题意有f(2)=f(1)+f(1)=4…9分
∴不等式可化为f(x-1)-f(1-2x-x2)<f(2),即f(x-1)<f(1-2x-x2)+f(2),
∴f(x-1)<f(3-2x-x2),…10分
∵f(x)为R上的减函数,
∴x-1>3-2x-x2解得x<-4或x>1…11分
∴不等式的解集为:{x|x<-4或x>1}…12分
∴f(0)=0,…1分
又取y=-x可得f(x-x)=f(x)+f(-x)=f(0)(x∈R),即f(x)+f(-x)=0(x∈R)
∴f(-x)=-f(x)(x∈R)…3分
由x的任意性可知f(x)为奇函数…4分
(2)证明:设x1<x2,则x2=x1+(x2-x1),…5分
∴f(x1)-f(x2)=f(x1)-f[x1+(x2-x1)]=f(x1)-[f(x1)+f(x2-x1)]=-f(x2-x1)…7分
∵x2-x1>0,∴f(x2-x1)<0,
∴f(x1)-f(x2)>0,即f(x1)>f(x2),
∴f(x)为R上的减函数;
(3)依题意有f(2)=f(1)+f(1)=4…9分
∴不等式可化为f(x-1)-f(1-2x-x2)<f(2),即f(x-1)<f(1-2x-x2)+f(2),
∴f(x-1)<f(3-2x-x2),…10分
∵f(x)为R上的减函数,
∴x-1>3-2x-x2解得x<-4或x>1…11分
∴不等式的解集为:{x|x<-4或x>1}…12分
高一函数【奇偶性】已知函数f(x)对一切实数x,y∈R都有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,
已知函数y=f(x)对任意实数x,y都有f(x+y)=f(x)+f(y)-1且当x>0时f(x)>1,f(3)=4(1)
函数f(x)对一切实数x,y均有f(x+y)-f(x)=(x+2y=1)成立,且f(x)=0
已知函数f(x)对一切x,y都有f(x+y)=f(x)+f(y).
已知函数f(x)对于一切x,y∈R都有f(x+y)=f(x)+f(y),且当x>0时f(x)< f(1)= -2
已知函数f(x)对任意实数x,y都有f(xy)=f(x)*f(y),且f(-1)=1,f(27)=0,当0≤x<1时,f
已知函数f(x)对一切实数x.y,都有f(x+y)-f(y)=x(x+2y+1)成立,且f(1)=0.(一),求f(0)
已知函数f(x)对任意x、y∈R,都有f(x)+f(y)=f(x+y),且当x<0时,f(x)<0,f(1)<-2∕3.
已知函数f(x)对任意实数x,y都有f(xy)=f(x)+f(y)成立.求f(0)与f(1)的值
已知函数f(x)对一切实数x,y∈R都有f(x+y)=f(x)+f(y),且当x>0时,f(x)
已知f(x+y)+f(x-y)=2f(x)·f(y)对一切实数x、y都成立,且f(0)不等于0,求证:f(x)是偶函数
已知函数f(x)对一切实数x、y都有f(x+y)-f(y)=(x+2y+1)x成立,且f(1)=0,