作业帮 > 数学 > 作业

f(x)=2根号3sinxcosx+2cosx²+a的最大值为1 求常数a的值 求使f(x)≥0成立的x的集合

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 05:38:38
f(x)=2根号3sinxcosx+2cosx²+a的最大值为1 求常数a的值 求使f(x)≥0成立的x的集合
f(x)=2根号3sinxcosx+2cosx²+a的最大值为1 求常数a的值 求使f(x)≥0成立的x的集合
f(x)=2√3sinxcosx+2cos²x+a
=√3sin2x+cos2x+1+a
=2sin(2x+π/6)+1+a.
∴sin(2x+π/6)=1→x=kπ+π/6时,
f(x)|max=a+3=1,故a=-2.
若f(x)≥0恒成立,则f(x)|max≤0,
∴a+3≤0,即a≤-3.