作业帮 > 数学 > 作业

已知:ABC是直角三角形,∠BCA=90,CM、BN分别为AB、AC边上的中线,

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 08:41:12
已知:ABC是直角三角形,∠BCA=90,CM、BN分别为AB、AC边上的中线,

已知:ABC是直角三角形,∠BCA=90,CM、BN分别为AB、AC边上的中线,
设CM与BN相交于D.
因为∠BCA=90°,CM垂直BN,所以△BCN与△BDC相似,从而有BC²=BD*BN.
因为CM、BN分别为AB、AC边上的中线,所以D是重心,所以BD=2/3 BN.
所以BC²=BD*BN=2/3 BN²,所以BN的长为(√6/2)*a
下面证BD=2/3BN,用中位线定理:做NE//CM,因为N为AC中点,所以AE=EM,又M为AB中点,所以BM=2ME,在△BDM和△BNE中,BD/BN=BM/BE=2/3.