一道数学题:已知△ABC,AD是角BC边上的中线,分别以AB边、AC边为直角边各向形外做等腰直角三角形,
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 14:15:42
一道数学题:已知△ABC,AD是角BC边上的中线,分别以AB边、AC边为直角边各向形外做等腰直角三角形,
已知△ABC,AD是角BC边上的中线,分别以AB边、AC边为直角边各向形外做等腰直角三角形,如图.求证EF=2AD
已知△ABC,AD是角BC边上的中线,分别以AB边、AC边为直角边各向形外做等腰直角三角形,如图.求证EF=2AD
证明:在AD的延长线上取点G,使AD=GD,连接BG、CG
∵等腰RT△ABE、等腰RT△ACF
∴∠BAE=∠CAF=90,AE=AB,AF=AC
∴∠BAC+∠EAF=360-∠BAE-∠CAF=180
∵AD是BC边上的中线
∴BD=CD
∵AD=GD
∴平行四边形ABGC
∴CG=AB,∠ACG+∠BAC=180
∴CG=AE,∠ACG=∠EAF
∴△ACG≌△FAE (SAS)
∴EF=AG
∵AG=AD+GD=2AD
∴EF=2AD
∵等腰RT△ABE、等腰RT△ACF
∴∠BAE=∠CAF=90,AE=AB,AF=AC
∴∠BAC+∠EAF=360-∠BAE-∠CAF=180
∵AD是BC边上的中线
∴BD=CD
∵AD=GD
∴平行四边形ABGC
∴CG=AB,∠ACG+∠BAC=180
∴CG=AE,∠ACG=∠EAF
∴△ACG≌△FAE (SAS)
∴EF=AG
∵AG=AD+GD=2AD
∴EF=2AD
一道数学题:已知△ABC,AD是角BC边上的中线,分别以AB边、AC边为直角边各向形外做等腰直角三角形,
已知△ABC,AD是角BC边上的中线,分别以AB边、AC边为直角边各向形外做等腰直角三角形,如图.求证EF=2AD.
已知△ABC,AD是BC中线,分别以AB、AC为直角边,各向外做等腰直角三角形,求证EF=2AD
已知在三角形ABC中,以AB、AC为直角边,分别向外作等腰直角三角形ABE、ACF,连接EF,过点A作AD垂直BC,垂足
已知:如图,分别以△ABC的两边AB和AC为直角边向形外作等腰直角三角形ABD和等腰三角形ACE
在直角三角形ABC内,AB与AC是直角边,AD是BC边上的高..
在三角形ABC中,以AB,AC为直角边,分别向形外做等腰直角三角形ABE,ACF连接EF,过点A作AD垂直BC,垂足为D
在ΔABC中,以B,C为直角顶点,以AB,AC为直角边向三角形外分别作等腰直角三角形ABD和直角三角形ACE,过BC边的
如图,已知△ABC中,以AB,AC为直角边,分别向外作等腰直角三角形ABE ACF,连结EF,过点A作AD⊥BC,垂足为
已知如图,在△ABC中,以AB、AC为直角边,分别向外作等腰直角三角形△ABE、△ACF,连结EF,过点A作AD⊥BC
已知:如图12,在△ABC中,以AB AC为直角边,分别向外作等腰直角三角形ABE ACF,连结EF,过点A作AD⊥BC
已知:如图,在△ABC中,以AB AC为直角边,分别向外作等腰直角三角形ABE ACF,连结EF,过点A作AD⊥BC