在p[x]n(n为下角标)中(n>1),求微分变换D的特征多项式,并证明D在任何一个基下的矩阵都不可能是对角矩阵
求助线代题——在Fn[x]中(n>1),求微分变换o的特征多项式,并证明o在任何一组基下矩阵都不可能是对角矩阵
微分变换、对角矩阵在Fn[x]中(n>1),求微分变换T的特征多项式.求证T在任何一组基下的矩阵都不是对角矩阵.
已知n阶矩阵A的特征值为λ1,λ2,……,λn,p(x)为x的多项式,求 p(A)的特征多项式
正交变换的证明题证明:A是n维欧式空间V的一个线性变换,若A在任一组标准正交基下矩阵是正交矩阵,那么A是正交变换.
n维欧氏空间的对称变换T在标准正交基下的矩阵B即是正定矩阵又是正交矩阵,证明:T是恒等变换
一个n阶矩阵,主对角线上都为-1,其余元素全部为1,求这个矩阵的秩?
任意n阶方阵都可表示成 A=D+N的形式,其中D与某对角矩阵相似.N为幂零矩阵(即存在m使得N^m=0)且DN=ND
证明:n阶主对角元素为正数的上三角正交矩阵是单位矩阵
设n阶矩阵A的n个特征根互异,证明:凡具有AB=BA的矩阵B,必与对角矩阵相似,且这样的B是A的多项式
如何证明n阶矩阵的特征多项式等于其(特征矩阵)不变因子的乘积
设n阶矩阵A对称正定,n阶矩阵B为对称矩阵,证明存在合同变换矩阵P,使得P'AP与P'BP均为对角矩阵
设A是一个n阶上三角矩阵,并且主对角线上的元素不为0,如何证明它的逆矩阵也是上三角形矩阵?