作业帮 > 数学 > 作业

(sinx-tanx)/x^3 x趋于0 的极限怎么求?

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 03:22:32
(sinx-tanx)/x^3 x趋于0 的极限怎么求?
答案是-0.5 可不可以给出过程?麻烦赐教了!
(sinx-tanx)/x^3 x趋于0 的极限怎么求?
答案是 -0.5
(sinx-tanx)/x^3
= [sinx(1-1/cosx)]/x^3
= [(sinx)/x]*(1-1/cosx)/x^2
当x趋近于0时,(sinx)/x=1
所以
lim(sinx-tanx)/x^3 = lim(1-1/cosx)/x^2
当x趋近于0时,(1-1/cosx)/x^2 的分子分母都趋近于0,所以用罗比达法则
lim(1-1/cosx)/x^2
=lim -[ (cosx)^2*sinx ]/(2x)
=lim -(cosx)^2*[sinx/2x]
=lim -1*0.5
= -0.5