如图1,在直角三角形abc中,角acb等于90°,o为bc中点,d为bc上一动点,延长do到e,且oe=od,连接ce
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 10:00:48
如图1,在直角三角形abc中,角acb等于90°,o为bc中点,d为bc上一动点,延长do到e,且oe=od,连接ce
1.D为AB中点,O为BC中点,则OD为中位线,OD平行AC
且OD=1/2 AC
DE=OE+OD=2OD=AC
DE与AC相等且平行
所以四边形EDAC是平行四边形
2. 是,
因为OE=OD
OC=OB,∠COE=∠BOD
所以,△COE全等于△BOD
∠ECO=∠DBO
所以CE平行BD
∠B=90-60=30
∠EDA=∠DOB+∠B=30+30=60=∠A
所以四边形EDAC是等腰梯形
3.上一题得到,△COE全等于△BOD
所以CE=BD
周长=ED+DA+AC+CE=ED+DA+AC+BD=AC+AB+ED
周长最小,ED要最小,OD要最小
所以OD垂直AB于D
用勾股定理可得到
BC=20
OB=10
三角形BOD相似三角形BAC
OD/AC=BO/AB
OD=6
ED=12
周长=AC+AB+ED=15+25+12=52
且OD=1/2 AC
DE=OE+OD=2OD=AC
DE与AC相等且平行
所以四边形EDAC是平行四边形
2. 是,
因为OE=OD
OC=OB,∠COE=∠BOD
所以,△COE全等于△BOD
∠ECO=∠DBO
所以CE平行BD
∠B=90-60=30
∠EDA=∠DOB+∠B=30+30=60=∠A
所以四边形EDAC是等腰梯形
3.上一题得到,△COE全等于△BOD
所以CE=BD
周长=ED+DA+AC+CE=ED+DA+AC+BD=AC+AB+ED
周长最小,ED要最小,OD要最小
所以OD垂直AB于D
用勾股定理可得到
BC=20
OB=10
三角形BOD相似三角形BAC
OD/AC=BO/AB
OD=6
ED=12
周长=AC+AB+ED=15+25+12=52
如图1,在Rt△ABC中,∠ACB=90°,点0是BC的中点,D为AB上一动点,延长DO到E,且OE=OD,连接CE.
如图在三角形abc中,∠acb=90°,点e为ab中点,连接ce,过点e作ed⊥bc于点d,在de的延长线上取一点f,使
如图,在△ABC中,∠ACB=90°,点E为AB中点,连接CE,过点E作ED⊥BC于点D,在DE的延长线上取一点F,使A
如图,在△ABC中,∠ACB=90°,点E为AB的中点,连接CE,过点E作ED⊥BC于点D,在DE的延长线上取F一点,使
如图,在直角三角形ABC中,∠ACB=90°,AC=BC,D为BC的中点,CE⊥AD,垂足为E,BF∥AC,交CE的延长
已知:如图,在△ABC中,∠ACB=90°,点E为AB的中点,过点E作ED⊥BC于D,F在DE的延长线上,且AF=CE,
如图,在Rt△ABC中,∠ACB=90°,D为BC的中点,DE⊥BC交AB于E,点F在DE上,且AF=CE.(1)求证:
如图,在等腰直角三角形ABC中,角ABC=90度,D为AC上的一点,延长BC到E,若CE=CD,
如图在三角形abc中 AB=AC AD是三角形ABC的角平分线 点O为AB的中点 连接DO并延长到点E使OE=OD,连接
在三角形ABC中,角ACB=90°,点E为AB中点,连接CE,过点E作ED⊥BC于点D,在DE的延长线上取一点F,使AF
如图,在RT三角形ABC中,角C等于90度,AC=BC=6,D为AC边的中点,点E为AB上一动点,点F为射线BC上一动点
如图,已知△ABC中,∠ACB=90°,AC=BC,D为AC上一点,延长BC到E,使得CE=CD.