已知数列{an}的前n项和为Sn,a1=1/2,且Sn=n^2An-n(n-1),求an
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 14:21:48
已知数列{an}的前n项和为Sn,a1=1/2,且Sn=n^2An-n(n-1),求an
n≥2时,
Sn=n²an-n(n-1)
Sn-1=(n-1)²a(n-1)-(n-1)(n-2)
an=Sn-Sn-1=n²an-n(n-1)-(n-1)²a(n-1)+(n-1)(n-2)
an=n²an-(n-1)²a(n-1)-2n+2
(n+1)(n-1)an-(n-1)²a(n-1)-2(n-1)=0
(n+1)an-(n-1)a(n-1)=2
an/(n-1)-a(n-1)/(n+1)=2/[(n+1)(n-1)]=1/(n-1)-1/(n+1)
(an-1)/(n-1)=[a(n-1)-1]/(n+1)
(an-1)/[a(n-1)-1]=(n-1)/(n+1)
[a(n-1)-1]/[a(n-2)-1]=(n-2)/n
…………
(a2-1)/(a1-1)=1/3
连乘
(an-1)/(a1-1)=[1×2×...×(n-1)]/[3×4×...×(n-1)×n×(n+1)]=(1×2)/[n(n+1)]
an-1=2(1/2-1)/[n(n+1)]=-1/[n(n+1)]
an=1-1/[n(n+1)]=(n²+n-1)/[n(n+1)]
n=1时,a1=(1+1-1)/(1×2)=1/2,同样满足.
数列{an}的通项公式为an=(n²+n-1)/[n(n+1)]
Sn=n²an-n(n-1)
Sn-1=(n-1)²a(n-1)-(n-1)(n-2)
an=Sn-Sn-1=n²an-n(n-1)-(n-1)²a(n-1)+(n-1)(n-2)
an=n²an-(n-1)²a(n-1)-2n+2
(n+1)(n-1)an-(n-1)²a(n-1)-2(n-1)=0
(n+1)an-(n-1)a(n-1)=2
an/(n-1)-a(n-1)/(n+1)=2/[(n+1)(n-1)]=1/(n-1)-1/(n+1)
(an-1)/(n-1)=[a(n-1)-1]/(n+1)
(an-1)/[a(n-1)-1]=(n-1)/(n+1)
[a(n-1)-1]/[a(n-2)-1]=(n-2)/n
…………
(a2-1)/(a1-1)=1/3
连乘
(an-1)/(a1-1)=[1×2×...×(n-1)]/[3×4×...×(n-1)×n×(n+1)]=(1×2)/[n(n+1)]
an-1=2(1/2-1)/[n(n+1)]=-1/[n(n+1)]
an=1-1/[n(n+1)]=(n²+n-1)/[n(n+1)]
n=1时,a1=(1+1-1)/(1×2)=1/2,同样满足.
数列{an}的通项公式为an=(n²+n-1)/[n(n+1)]
已知数列{an}a1=2前n项和为Sn 且满足Sn Sn-1=3an 求数列{an}的通项公式an
已知数列an的首项a1=5,前n项和为Sn,且S(n+1)=2Sn+n+5(n∈N*),求数列{an}的前n项和Sn,设
已知数列{an}的前N项和为Sn 且an+1=Sn-n+3,a1=2,.求an的通项公式
数列:已知数列{an}前 n项和为Sn,且a1=2,4Sn=ana(n+1).求数列{an}的通项公式.
已知数列An中,其前n项和为Sn,A1=1,且An+1=2Sn,求An的通项公式和Sn
已知数列an的前n项和为sn,且满足sn=n²an-n²(n-1),a1=1/2
数列An的前n项和为Sn,已知A1=1,An+1=Sn*(n+2)/n,证明数列Sn/n是等比数列
已知数列an的前n项和为sn,且a1=1,an+1=1/2sn
已知数列{an}的前n项和为Sn,且a1=1,an+1=1/2Sn.
已知数列{an}的首项a1=5,前n项和为Sn,且Sn+1=2Sn+n+5(n∈N*).
已知数列{an}的首项a1=5,前n项和为Sn,且Sn+1=2Sn+n+5(n∈N*)
已知数列{an}的首项是a1=1,前n项和为Sn,且Sn+1=2Sn+3n+1(n∈N*).