裂项求和法的原理是?比如1+1/1*2+1/2*3=1+(1-1/2)+(1/2-1/3) 分母好像是因为和等差数列有关
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 01:12:15
裂项求和法的原理是?
比如1+1/1*2+1/2*3
=1+(1-1/2)+(1/2-1/3) 分母好像是因为和等差数列有关系,怎么回事?
比如1+1/1*2+1/2*3
=1+(1-1/2)+(1/2-1/3) 分母好像是因为和等差数列有关系,怎么回事?
通过观察可知2-1=1,3-2=1,4-3=1……即分母所拆成的2个因数差与分子相同,因此分数可整理成如下的过程
1/1×2=(2-1)/1×2=2/1×2-1/1×2=1-1/2,
1/2×3=(3-2)/2×3=3/2×3-2/2×3=1/2-1/3,
1/3×4=(4-3)/3×4=4/3×4-3/3×4=1/3-1/4,……
希望你能看明白,根据分数的运算法则,同分母分数相减,分母不变分子相减,把过程反过来就是上面的推理,然后再约分即可.
当然可以看出,如果是2/3×5裂项,可以按照同样的思路2=5-3:
2/3×5=(5-3)/3×5=5/3×5-3/3×5=1/3-1/5
3/8×11=(11-8)/8×11=11/8×11-8/8×11=1/8-1/11
因此若分子等于分母所拆成的两个因数差,就都可以按照这样的方式裂项,即
d/n(n+d)=1/n-1/n+d
如果不相同呢,我们也可以进行一定的转化,如1/1×3,此时3-1≠1,不能直接裂项,但是我们可以求出2/1×3=1-1/3,很明显,1/1×3是2/1×3的1/2,故1/1×3=1/2×(1-1/3).同样的,再举一个例子,如果是4/5×11,此时11-5≠4,也可先求出6/5×11=1/5-1/11,那么4/5×11是6/5×11的2/3,因此4/5×11=2/3×(1/5-1/11).
因此我们可以总结一下,对于任意的一个分数b/n(n+a)=b/a×【1/n-1/(n+a)】
个人想法,如若不太清楚,可留言,我们再讨论
1/1×2=(2-1)/1×2=2/1×2-1/1×2=1-1/2,
1/2×3=(3-2)/2×3=3/2×3-2/2×3=1/2-1/3,
1/3×4=(4-3)/3×4=4/3×4-3/3×4=1/3-1/4,……
希望你能看明白,根据分数的运算法则,同分母分数相减,分母不变分子相减,把过程反过来就是上面的推理,然后再约分即可.
当然可以看出,如果是2/3×5裂项,可以按照同样的思路2=5-3:
2/3×5=(5-3)/3×5=5/3×5-3/3×5=1/3-1/5
3/8×11=(11-8)/8×11=11/8×11-8/8×11=1/8-1/11
因此若分子等于分母所拆成的两个因数差,就都可以按照这样的方式裂项,即
d/n(n+d)=1/n-1/n+d
如果不相同呢,我们也可以进行一定的转化,如1/1×3,此时3-1≠1,不能直接裂项,但是我们可以求出2/1×3=1-1/3,很明显,1/1×3是2/1×3的1/2,故1/1×3=1/2×(1-1/3).同样的,再举一个例子,如果是4/5×11,此时11-5≠4,也可先求出6/5×11=1/5-1/11,那么4/5×11是6/5×11的2/3,因此4/5×11=2/3×(1/5-1/11).
因此我们可以总结一下,对于任意的一个分数b/n(n+a)=b/a×【1/n-1/(n+a)】
个人想法,如若不太清楚,可留言,我们再讨论
EXCEL:分式两边分别求和,就是分母和分母相加,分子和分子相加?求和后还是用分式显示 2/3 加 1/4 =3/7
等差数列 求和公式1. 已知{an} 是等差数列,且 a1=2,a1+a2+a3=12,(1)求数列{an}的通项公式;
关于等差数列求和公式用等差数列求和公式可以算出1+3+5+7+.+999 的和么?
等差数列an=2n+3,求和:(1/a1a2)+(1/a2a3)+.+(1/anan+1)
1+2+3+4+……+2005=?用等差数列求和的方法(给我公式)
等差数列求和能用在1+2+3+……+30中吗
高中数学(求和)求和:1+1/(1+2)+1/(1+2+3)+……+1/(1+2+……+n)用裂项相消法,第一步好像是在
对 n\(n+1)!求和 注意分母是n+1的阶乘
三次方求和公式,比如2次方的是(2n+1)(n+1)/6的那种格式
阶乘求和问题请问1!+2!+3!+.2007!怎么样求和?
等差数列的前n项和已知等比数列{an}中,a2=2,a5=1/4,求和:a1a2+a2a3+…+anan+1.
等差数列{a}中,前三项分别为x,2x,5x-4,前n项和为Sn,且Sk=20.(1)求x和k的值(2)求和:Tn=3/