设z是x,y的函数,且 xy=xf(z)+yψ(z) ,xf'(z)+yψ'(z)≠0 .证明:[x-ψ(z)]·(dz
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/16 01:47:08
设z是x,y的函数,且 xy=xf(z)+yψ(z) ,xf'(z)+yψ'(z)≠0 .证明:[x-ψ(z)]·(dz/dx)=[y-f(z)]·(dz/dy)
xy=xf(z)+yψ(z)两边全微分
xdy+ydx=dxf(z)+xf'(z)dz+dyψ(z)+yψ'(z)dz
整理有
dz={[y-f(z)]/[xf'(z)+yψ'(z)]}dx+{[x-ψ(z)]/[xf'(z)+yψ'(z)]}dy
得到
dz/dx=[y-f(z)]/[xf'(z)+yψ'(z)]
dz/dy=[x-ψ(z)]/[xf'(z)+yψ'(z)]
其中xf'(z)+yψ'(z)≠0
所以:
[x-ψ(z)]·(dz/dx)=[y-f(z)]·(dz/dy)
xdy+ydx=dxf(z)+xf'(z)dz+dyψ(z)+yψ'(z)dz
整理有
dz={[y-f(z)]/[xf'(z)+yψ'(z)]}dx+{[x-ψ(z)]/[xf'(z)+yψ'(z)]}dy
得到
dz/dx=[y-f(z)]/[xf'(z)+yψ'(z)]
dz/dy=[x-ψ(z)]/[xf'(z)+yψ'(z)]
其中xf'(z)+yψ'(z)≠0
所以:
[x-ψ(z)]·(dz/dx)=[y-f(z)]·(dz/dy)
复合函数求导法设z=xy+xF(u),而u=y/x,F(u)可导,证明x*(z对x的偏导)+y*(z对y的偏导)=z+x
高数 偏导数设z=xy+xF(u),而u=y/x,F(u)为可导函数,证明:x*(z对x的偏导)+y(z对y的偏导)=z
设Z=F(X,Y)是由方程E^Z-Z+XY^3=0确定的隐函数,求Z的全微分Dz
设Z=f(xz,z/y)确定Z为x,y的函数求dz
设f(x,y)具有一阶连续偏导数,z=xf(x^y,e^xy),求dz
设f为可微函数,z=z(x,y)是由方程y+z=xf(y∧2-z∧2)所确定的隐函数,证明xσz/σx-zσz/σy=y
设z=z(x,y)是有方程x²-z²+ln(y/z)=0确定的函数,求dz
设z=z(x,y)是由方程x^2 - z^2 + ln(y/z)=0确定的函数,求dz
设z=z(x,y)由e^(-xy)-2z+e^z=0所确定的二元函数 求dz
设函数z=z(x,y)由方程x^2+y^2+z^2=xf(y/x)确定,且f可微求,z对x,y的偏导
z=f(x,y)是方程e^(-xy)-2z+e^z给出的函数,求全微分dz
设z=ln(x^z×y^x),求dz