已知数列an中,a1=2,An+1=an平方加2an 1,证明数列【lg(1+an)】是等比
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 08:30:36
已知数列an中,a1=2,An+1=an平方加2an 1,证明数列【lg(1+an)】是等比
已知数列an中,a1=2,An+1=an平方加2an
1,证明数列【lg(1+an)】是等比数列,求an的通项公式
2,若bn=1/an+1/an+2,求数列bn的前n项和sn
已知数列an中,a1=2,An+1=an平方加2an
1,证明数列【lg(1+an)】是等比数列,求an的通项公式
2,若bn=1/an+1/an+2,求数列bn的前n项和sn
∵ a(n+1)=a(n)^2+2a(n) ∴ 1+a(n+1)=[a(n)+1]^2 lg[1+a(n+1)]=2lg[a(n)+1]
即 lg[1+a(n+1)]/lg[a(n)+1]=2 数列【lg(1+an)】是等比数列.
lg[a(1)+1]=lg3 lg[1+a(n)]=2^(n-1)lg3=lg3^[2^(n-1)] 1+a(n)=3^[2^(n-1)]
∴ a(n)=3^[2^(n-1)]-1
即 lg[1+a(n+1)]/lg[a(n)+1]=2 数列【lg(1+an)】是等比数列.
lg[a(1)+1]=lg3 lg[1+a(n)]=2^(n-1)lg3=lg3^[2^(n-1)] 1+a(n)=3^[2^(n-1)]
∴ a(n)=3^[2^(n-1)]-1
高三数列数列题已知在数列an中,a1=2,(an+1)/an=an+2,n=1,2,3证明数列lg(1+an)是等比数列
已知数列{an}中,a1=2,an+1=an+cn(
若数列{An}满足An+1=An^2,则称数列{An}为“平方递推数列”,已知数列{an}中,a1=9,点(an,an+
已知数列{an}中,a1=2,a(n+1)=an2+2an(n∈N*).(1)证明数列{lg(1+an)}是等比数列,
已知数列an中,a1=2,an+1=an+lg(n/n+1)求an
已知数列an中,a1=2,a(n+1)=an^2+2*an.1、求证;lg(1+an)是等比数列.2、
已知数列{an}满足an+1=an+3n+2,且a1=2,求an.
已知数列{an}中,a1=2,an+1=3an+2,记bn=an+1,求证:数列{bn}为等比数列
在数列{an}中,已知a1=2,a(n+1)=2an/(an+1),证明数列{1/an-1}为等比数列,并求出数列{an
在数列an中,a1=1,a2=2,数列{an*an+1}是公比为q的等比,若an*an+1+an+1*an+2>an+2
数列an中,a1=3,an=(3an-1-2)/an-1,数列bn满足bn=an-2/1-an,证明bn是等比数列 2.
已知数列{an}中a1=1 a2=2 且an+1=(1+q)an-qan-1设bn=an+1-an 证明{bn}是等比数