曲线的切向量T=[1,y'(x),z'(x)],曲面的法向量n=(F'x,F'y,F'z).
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 14:04:25
曲线的切向量T=[1,y'(x),z'(x)],曲面的法向量n=(F'x,F'y,F'z).
同样都是导数,为什么一个是切向量,另一个是法向量?
它俩怎么区分啊?
还有就是,斜率等于y对x的导数,和上面的有没有联系?
同样都是导数,为什么一个是切向量,另一个是法向量?
它俩怎么区分啊?
还有就是,斜率等于y对x的导数,和上面的有没有联系?
因为曲线定义用的参数方程,曲面定义用的不是.
对于参数方程定义的曲线[x(t),y(t),z(t)],其切向量是[x', y', z'],如果参数t就是x的话,就得到你的第一个式子.
你这个曲面定义用的是{(x,y,z) | F(x,y,z)=0},取这曲面上的一条参数曲线[x(t),y(t),z(t)],有
F(x(t),y(t),z(t))=0,两边求导,得到 [F'x, F'y, F'z] . [x', y', z'] = 0,内积为0,也就是两者垂直.
所以你的第二个式子是法向量,因为它和切向量垂直.
如果你也用参数方式定义曲面的话,比如 [x(u,v), y(u,v), z(u,v)]来定义曲面,那么求导得到的也是切向量:[xu, yu, zu] 这三个偏导组成的向量,就是曲面的切向量,且它在由{v=常数}定义的曲面曲线上.
对于参数方程定义的曲线[x(t),y(t),z(t)],其切向量是[x', y', z'],如果参数t就是x的话,就得到你的第一个式子.
你这个曲面定义用的是{(x,y,z) | F(x,y,z)=0},取这曲面上的一条参数曲线[x(t),y(t),z(t)],有
F(x(t),y(t),z(t))=0,两边求导,得到 [F'x, F'y, F'z] . [x', y', z'] = 0,内积为0,也就是两者垂直.
所以你的第二个式子是法向量,因为它和切向量垂直.
如果你也用参数方式定义曲面的话,比如 [x(u,v), y(u,v), z(u,v)]来定义曲面,那么求导得到的也是切向量:[xu, yu, zu] 这三个偏导组成的向量,就是曲面的切向量,且它在由{v=常数}定义的曲面曲线上.
关于空间曲面F(x,y,z)=0的向量问题……
曲面z=f(x,y)上对应于(xo,yo,zo)处与z轴相交成锐角的法向量为多少?书上答案是(-fx(xo,yo),-f
u=f(x-y,y-z,t-z)
设F(x,y,z)=x^2+2y^2+2z^2-5,则F(x,y,z)在点(1,1,1)处沿向量L(1,2,2)的 方向
曲面z=arctan(y/x)在点(1,1,π/4)处切平面的法向量是:
一个高数的困惑为什么满足方程组F(x,y,z)=0 G(x,y,z)=0的所有曲面束为F(x,y,z)+aG(x,y,z
在F(x,y)=0中,梯度向量的方向是切向方向,在F(x,y,z)=0中,梯度向量的方向是法向方向对不对?
二元函数 z=f (x,y) 的图形为何通常是一张曲面?
f(x,y,z,w)=x*(x+y)*(x+y+z)*(x+y+z+w)
曲线和曲面积分曲线积分和曲面积分中,对于一个这样的积分∫f(x,y,z)dx+g(x,y,z)dy+h(x,y,z)dz
二次曲线的法向量问题三维空间中的二次曲线F(x,y,z)=0,其上一点P(x0,y0,z0)处的法向量如何表达?
若可微函数f(x,y)对任意x,y,t满足f(tx,ty)=(t^2)f(x,y),P(1,-2,2)是曲面z=f(x,