作业帮 > 数学 > 作业

已知点F(1.0),直线L:x=-1,点E是L上的动点,过点E垂直于y轴的直线与线段EF的垂直平分线交于点W.

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 22:59:28
已知点F(1.0),直线L:x=-1,点E是L上的动点,过点E垂直于y轴的直线与线段EF的垂直平分线交于点W.
1 求点W(x,y)的轨迹C的方程.
2 过点A(2.0)的直线L `与轨迹C交于P、Q亮点,且向量FQ+向量FP=向量FR,求点R的轨迹方程!
已知点F(1.0),直线L:x=-1,点E是L上的动点,过点E垂直于y轴的直线与线段EF的垂直平分线交于点W.
(1)
由题意,W在EF中垂线上,
所以WE=WF
即W到直线x=-1的距离等于W到点F(1,0)的距离.
由抛物线的几何定义可知,
W满足方程:y^2 = 4x
(2)
若直线L'为竖直直线,
即x=2
则P(2, 2√2) Q(2, -2√2)
易知FR=FP+FQ=(2,0)
则R(3,0)
若直线L'不为竖直直线,
则,设L'斜率为k
L':y=kx-2k
联立抛物线解析式,化简得:
k^2 x^2 - 4(k^2 + 1)x + 4k^2 = 0
因为直线L'与抛物线交于两个点,所以k≠0
设P(x1,k(x1-2)) Q(x2,k(x2-2))
所以FP=(x1 - 1, k(x1-2)) FQ=(x2 - 1, k(x2-2))
FR=FP+FQ=(x1+x2 - 2, k(x1+x2 - 4))
所以R(x1+x2 - 1, k(x1+x2 - 4))
由韦达定理:x1+x2 = -b/a = 4 + 1/k^2
代入得:
R(3 + 1/k^2 , k)
即Xr=3 + 1/k^2; Yr=k
Xr - 1/Yr^2 = 3
所以R的轨迹方程为:x - 1/y^2 = 3
已知点F(a,0)(a>0),直线l:x=-a,点E是l上的动点,过点E垂直于y轴的直线与线段EF的垂直平分线交于点P. 已知点F(14,0),直线l:x=−14,点B是l上的动点.若过B垂直于y轴的直线与线段BF的垂直平分线交于点M,则点M 已知点F(1,0)和直线l1:x=-1,直线l2过直线l1上的动点M且与直线l1垂直,线段MF的垂直平分线l与直线l2相 已知点F是抛物线C:y²=4x的焦点,过点F作一不垂直于x轴的直线l交抛物线C于点A,B,线段AB的中垂线交x :已知定点A(-1,0),定直线L:X=0.5,不在X轴上的动点P与点F的距离是到L的2倍.过F的直线交轨迹于B,C直线 已知直线L过点A(0,1)和B(1,0),P是x轴正半轴上的动点,OP的垂直平分线交L于点Q,交x轴于点M. 已知直线L过点A(0,1)和B(1,0),P是x轴正半轴上的动点,OP的垂直平分线交L于点Q,交x轴于点M 如图,点E,F在函数Y=K/X(X>0)的图像上,直线EF分别交于x轴,y轴与点A,B且BE:BF=1:4,过点E作EP 如图,已知直线L过点A(0,1)和B(1,0),P是x轴正半轴上的动点,OP的垂直平分线叫L于点Q交X轴为点M,(X轴中 如图,已知抛物线y=- x2+x+3的图象与x轴交于点A、点B,与y轴交于点C,顶点为D,对称轴l与直线BC相交于点E P是抛物线C:y=1/2 X^2 上一点,直线l过点P并与抛物线C在点P的切线垂直,l与抛物线C交于另一点Q,当点P在 关于轨迹的数学题已知点A(0,1),定直线L:y=-1,B为L上的一个动点.过B作直线m垂直于L,连接AB作线段AB连接