已知双曲线x^2/9-y^2/16=1的左、右焦点分别是F1、F2,若双曲线上存在一点P,使得|PF1|乘|PF2|=3
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 05:11:01
已知双曲线x^2/9-y^2/16=1的左、右焦点分别是F1、F2,若双曲线上存在一点P,使得|PF1|乘|PF2|=32
试求三角形F1PF2的面积
试求三角形F1PF2的面积
已知双曲线x^2/9-y^2/16=1
a^2=9 a=3
c^2=a^2+b^2=25 c=5
设P位于双曲线右支上,则
|PF1|-|PF2|=2a=6 平方,得 |PF1|^2+|PF2|^2-2|PF1|*|PF2|=36
因为 |PF1|*|PF2|=32
所以 |PF1|^2+|PF2|^2=100
||F1F2^2=4c^2=100
余弦定理
cos∠F1PF2=( |PF1|^2+|PF2|^2-|F1F2|^2)/2|PF1|*|PF2|=0
所以∠F1PF2=90°
S三角形F1PF2=1/2* |PF1|*|PF2|=16
a^2=9 a=3
c^2=a^2+b^2=25 c=5
设P位于双曲线右支上,则
|PF1|-|PF2|=2a=6 平方,得 |PF1|^2+|PF2|^2-2|PF1|*|PF2|=36
因为 |PF1|*|PF2|=32
所以 |PF1|^2+|PF2|^2=100
||F1F2^2=4c^2=100
余弦定理
cos∠F1PF2=( |PF1|^2+|PF2|^2-|F1F2|^2)/2|PF1|*|PF2|=0
所以∠F1PF2=90°
S三角形F1PF2=1/2* |PF1|*|PF2|=16
已知双曲线x^2/9- y^2/16=1的左、右焦点分别是F1、F2,P是双曲线上的一点,若|PF1|=7
已知双曲线 的左、右焦点分别为F1,F2,若在双曲线的右支上存在一点P,使得|PF1|=3|PF2|,则双曲线的离心
已知双曲线x^2/9-y^2/16=1的左、右焦点分别是F1、F2,P为双曲线右支上一点,且|PF2|=|F1F2|,则
已知双曲线x^2-y^2=1,F1,F2分别为焦点.点p为双曲线上的一点,PF1垂直于PF2,则PF1+PF2=
已知F1,F2是双曲线x^2/9-y^2/16=1的左、右焦点,点P在双曲线上,且|PF1 |*|PF2|=32 ,求∠
双曲线16x^2-9y^2=144的左、右焦点分别为F1、F2,点P在双曲线上,且|pF1|*|PF2|=64,求△F1
已知F1,F2分别是双曲线x^2/a-y^2/b=1的左右焦点,P为双曲线右支上的一点,如|PF1|^2/|PF2|^2
已知P是双曲线x2/16-y2/9=1右支上的一点,F1、F2分别是左、右焦点,若|PF1|=x|PF2|,求x的范围
已知双曲线 x^2/64-Y^2/36=1的左右焦点分别为f1、f2,点P是双曲线上的一点 若pf1:pf2=3:2 求
设F1、F2分别是双曲线x²-y²/9=1的左、右焦点,若点P在双曲线上,且向量PF1*向量PF2=
P是双曲线x^2/9-y^2/16=1左准线上一点,F1、F2分别是其左、右焦点,PF2与双曲线右支交于点Q,且PQ=2
已知F1,F2是双曲线(x^2/4)-(y^/21)=1的两个焦点,点P在双曲线上若PF1=6,则PF2=?