1、在直角梯形ABCD中,AB∥DC,AB⊥BC,∠A=60°,AB=2CD,E、F分别为AB、AD的中点,连结EF、E
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 19:11:52
1、在直角梯形ABCD中,AB∥DC,AB⊥BC,∠A=60°,AB=2CD,E、F分别为AB、AD的中点,连结EF、EC、BF、CF
⑴判断四边形AECD的形状(不证明);
⑵在不添加其它条件下,写出图中一对全等的三角形,用符号“≌”表示,并证明.
⑶若CD=2,求四边形BCFE的面积.
⑴判断四边形AECD的形状(不证明);
⑵在不添加其它条件下,写出图中一对全等的三角形,用符号“≌”表示,并证明.
⑶若CD=2,求四边形BCFE的面积.
(1)平行四边形(2分);
(2)△BEF≌△FDC(3分)或(△AFB≌△EBC≌△EFC)
证明:连接DE,
∵AB=2CD,E为AB中点,
∴DC=EB,
又∵DC∥EB,
∴四边形BCDE是平行四边形,
∵AB⊥BC,
∴四边形BCDE为矩形,
∴∠AED=90°,Rt△ABF中,∠A=60°,F为AD中点,
∴AE= AD=AF=FD,
∴△AEF为等边三角形,
∴∠BEF=180°-60°=120°,而∠FDC=120°,
在△BEF和△FDC中
DC=BE,∠CDA=∠FEB=120°,DF=EF,
∴△BEF≌△FDC(SAS).(6分)(其他情况证明略)
(3)若CD=2,则AD=4,DE=BC=2 ,
∴S△ECF= SAECD=1/2 CD•DE= 1/2×2×2 =2 ,
S△CBE= 1/2BE•BC= 1/2×2×2 =2 ,
∴S四边形BCFE=S△ECF+S△EBC=2 +2 =4
(2)△BEF≌△FDC(3分)或(△AFB≌△EBC≌△EFC)
证明:连接DE,
∵AB=2CD,E为AB中点,
∴DC=EB,
又∵DC∥EB,
∴四边形BCDE是平行四边形,
∵AB⊥BC,
∴四边形BCDE为矩形,
∴∠AED=90°,Rt△ABF中,∠A=60°,F为AD中点,
∴AE= AD=AF=FD,
∴△AEF为等边三角形,
∴∠BEF=180°-60°=120°,而∠FDC=120°,
在△BEF和△FDC中
DC=BE,∠CDA=∠FEB=120°,DF=EF,
∴△BEF≌△FDC(SAS).(6分)(其他情况证明略)
(3)若CD=2,则AD=4,DE=BC=2 ,
∴S△ECF= SAECD=1/2 CD•DE= 1/2×2×2 =2 ,
S△CBE= 1/2BE•BC= 1/2×2×2 =2 ,
∴S四边形BCFE=S△ECF+S△EBC=2 +2 =4
如图,在直角梯形ABCD中,AB∥CD,AB⊥BC,∠A=60°,AB=2CD,点E,F分别为AB,AD的中点,连结EF
如图,在直角梯形ABCD中,AB∥DC,AB⊥BC,∠A=60°,AB=2CD,E、F分别为AB、AD的中点,连接EF、
在直角梯形ABCD中,AB∥DC,AB⊥BC,∠A=60°,AB=2CD,E、F分别为AB、AD的中点,连接EF、EC、
在直角梯形ABCD中,AB平形CD,AB垂直BC,角A=60度,AB=2CD,E,F分别为AB,AD的中点,连结EF,E
如图 在直角梯形ABCD中,AB‖DC,AB⊥BC,角A=60°,AB=2CD,E、F分别为AB、AD的中点.连接EF、
如图 在直角梯形ABCD中 AB//DC AB⊥BC ∠A=60° AB=2CD E.F分别为AB.AD中点 联结EF
在直角梯形abcd中,ab//dc,ab垂直于bc,角a=90°,ab=2cd,e,f分别为ab,ad的中点,连接ef,
如图 在直角梯形ABCD中,AB‖DC,AB⊥BC,角D=120°,AB=2CD,E、F分别为AB、AD的中点.连接EF
在梯形ABCD中,AB∥CD,DC:AB=1:2,E、F分别是两腰BC、AD的中点,则EF:AB等于( )
在直角梯形ABCD中,AB平行于DC,AB垂直于BC,角A=60度,AB=2CD,E,F分别为AB,AD的重点,连接EF
在直角梯形ABCD中,AB平行DC,AB垂直BC,角A=60度,AB=2CD,E.F分别是AB,CD的中点,连接EF,E
在直角梯形ABCD中,AB平行于DC,AB垂直于BC,角A等于60度,AB等于2CD,E F分别为AB AD中点,连接E