已知数列{an}的前n项之和为Sn,a1=1,Sn=4a(n-1)+1 (n>=2,n∈N*),bn=a(n+1)-2a
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 21:07:56
已知数列{an}的前n项之和为Sn,a1=1,Sn=4a(n-1)+1 (n>=2,n∈N*),bn=a(n+1)-2an,n∈N*,Cn=(1/2^n)*an,n∈N*.
(1)求bn
(2)求cn
(1)求bn
(2)求cn
1)求bn的通项公式
由已知S(n)=4a(n-1)+1,得:S(n+1)=4an+1,两者相减,得
S(n+1)-S(n)=a(n+1)=4[an-a(n-1)]
由bn=a(n+1)-2an知,b(n-1)=an-2a(n-1)
因bn=a(n+1)-2an=4[an-a(n-1)]-2an=2an-4a(n-1)=2*b(n-1)
可见bn是公比为2的等比数列,由a1=1,s2=4a1+2,知a2=5,
从而b1=a2-2a1=5-2×1=3
因此bn=3*2^(n-1)
2)设cn=an/2^n,求证cn是等差数列
由cn=an/2^n,知an=2^n*cn,
且a(n+1)=2^(n+1)*c(n+1),a(n-1)=2^(n-1)*c(n-1),
由bn=2an-4a(n-1)=2*2^n*cn-4*2^(n-1)*c(n-1)=2^(n+1)*[cn-c(n-1)]=3*2^(n-1)
得cn-c(n-1)=3*2^(n-1)/2^(n+1)=3/4
同样有,
b(n+1)=2a(n+1)-4an=2*2^(n+1)*c(n+1)-4*2^n*cn=2^(n+2)*[c(n+1)-cn]=3*2^n
得c(n+1)-cn=3*2^n/2^(n+2)=3/4
由c(n+1)-cn=cn-c(n-1)=3/4知cn为一等差数列.
C1=1/2a1=1/2
Cn=1/2+(n-1)*3/4
由已知S(n)=4a(n-1)+1,得:S(n+1)=4an+1,两者相减,得
S(n+1)-S(n)=a(n+1)=4[an-a(n-1)]
由bn=a(n+1)-2an知,b(n-1)=an-2a(n-1)
因bn=a(n+1)-2an=4[an-a(n-1)]-2an=2an-4a(n-1)=2*b(n-1)
可见bn是公比为2的等比数列,由a1=1,s2=4a1+2,知a2=5,
从而b1=a2-2a1=5-2×1=3
因此bn=3*2^(n-1)
2)设cn=an/2^n,求证cn是等差数列
由cn=an/2^n,知an=2^n*cn,
且a(n+1)=2^(n+1)*c(n+1),a(n-1)=2^(n-1)*c(n-1),
由bn=2an-4a(n-1)=2*2^n*cn-4*2^(n-1)*c(n-1)=2^(n+1)*[cn-c(n-1)]=3*2^(n-1)
得cn-c(n-1)=3*2^(n-1)/2^(n+1)=3/4
同样有,
b(n+1)=2a(n+1)-4an=2*2^(n+1)*c(n+1)-4*2^n*cn=2^(n+2)*[c(n+1)-cn]=3*2^n
得c(n+1)-cn=3*2^n/2^(n+2)=3/4
由c(n+1)-cn=cn-c(n-1)=3/4知cn为一等差数列.
C1=1/2a1=1/2
Cn=1/2+(n-1)*3/4
设数列{an}的前n项和为Sn,已知a1=a,an+1=Sn+3^n,n∈N+.设bn=Sn+3n,求数列{bn}的通项
设数列{an}的前n项和为sn,已知a1=a,an+1=sn+3^n,n∈N* (1)设bn=sn-3^n,求数列{bn
设数列an的前n项和为Sn,已知a1=1,(2Sn)/n=a(n+1)-1/3n^2-n-2/3
设数列{an}的前n项和为sn.已知a1=a,an+1=sn-3n,n∈N*,设bn=sn-3n,且bn≠0
已知数列{an}的前n项和为Sn,且a1=2,3Sn=5an-A(n-1)+3S(n-1)(n≥2,n属于N*)设bn=
已知数列{an}的前n项和为Sn,a1=1,a(n+1)=1+2Sn.设bn=n/an,求证:数列{bn}的前n项和Tn
数列{an}的前n项和为Sn,已知A1=a,An+1=Sn+3^n(三的n次方),n∈N*
已知数列 an前n项和为Sn,a1=1,Sn=2a(n+1),求Sn
设数列{An}的前n项和为Sn,已知A1=a,A(n+1)=Sn+3∧n,n是正整数,设Bn=Sn-3∧n,求数列{Bn
设数列{An}的前n项和为Sn,已知S(n+1)=4An+2(n∈N*),A1=1,Bn=A(n+1)-2An.
设数列{an}的前n项和为Sn已知a1=a,a(n+1)=Sn+【3的n次方】n∈正整数设bn=Sn-[3的n次方]求{
已知数列an的前n项和为Sn,又有数列bn,他们满足关系b1=a1,对于n∈N*,有an+Sn=n,b(n+1)=a(n