当x≠0时,f(x)=x^2sin(1/x),当x=0时,f(x)=0,说明f(x)在x=0时的连续性和可导性?
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 08:14:34
当x≠0时,f(x)=x^2sin(1/x),当x=0时,f(x)=0,说明f(x)在x=0时的连续性和可导性?
[1]首先说说连续性,其实很简单,就是从图象上来看,函数所代表的曲线是连续的,不被间断的.对于分段函数,要严整连续性的方法就是看在明确的分段点处,该函数的左右极限是否相等.对于本题,就是看在x=0点处,这个函数的左右极限是不是为0.那么由于f(x)=x²sin(1/x),知当x→0时,x²是无穷小量,而sin(1/x)为有界函数,那么因为有界函数与无穷小的积是无穷小,所以该函数在x→0时的极限是0,于是可知该函数连续.
[2]再看看可导性.这里要从导数的定义来看.要使函数可导,就必须使函数在任何一个定义点上可导,对于分段函数来说,可导的关键在于分段点处.对于本题,首先明白的是在x不为0时,函数是f(x)=x²sin(1/x),该函数可导,那么要使整个分段函数可导的矛盾就在于x=0的情况了.我们来验证下在x=0时函数的可导性:
f'(0)=lim{[f(x)-f(0)]/[x-0]}=lim{[x²sin(1/x)]/x}=limxsin(1/x)该极限也是有界函数与无穷小的积的形式,故极限为0,那么可导.
[2]再看看可导性.这里要从导数的定义来看.要使函数可导,就必须使函数在任何一个定义点上可导,对于分段函数来说,可导的关键在于分段点处.对于本题,首先明白的是在x不为0时,函数是f(x)=x²sin(1/x),该函数可导,那么要使整个分段函数可导的矛盾就在于x=0的情况了.我们来验证下在x=0时函数的可导性:
f'(0)=lim{[f(x)-f(0)]/[x-0]}=lim{[x²sin(1/x)]/x}=limxsin(1/x)该极限也是有界函数与无穷小的积的形式,故极限为0,那么可导.
讨论下列函数当x=0时的连续性和可导性 f(x)=x^2*sin(1/x) x0 f(x)=0 x=0
讨论下列函数当x=0时的连续性和可导性 f(x)=ln(1+x) -1
f(x)定义在(0,+无穷大) 当x>1时 f(x)>0,且f(xy)=f(x)+f(y) 解不等式f[x(x-1/2)
若定义在R上的偶函数f(x)满足f(x+2)=f(x),且当x∈[0,1]时,f(x)=x²,
当x趋于0时,f(x)=1/x*sin(1/x)如何?
已知:f(x)=x,xε(0,1).f(x+2n)=f(x).求当xεR时,f(x)的表达式.
f(x)=sin[(sinx)^2],g(x)=3x^2+4x^3,求当x趋近于0时,f(x)/g(x)的极限
讨论函数,当x不等于0和2时f(x)=1/(e^x/x-2)-1,当x等于2时f(x)=1的连续性
f(x)是偶函数,x大于等于0时,f(x+2)=f(x) 当x[0,2)f(x)=log2^(x+1) 则f(-2010
极限 导数已知当x不等于0时,f(x)=(x^2)*sin(1/x),当x=0时,f(x)=0,则f(x)在x=0处——
f(x)为奇函数且当x>=0时,f(x)=x^2+2x,则当x
已知y=f(x)是偶函数,当x>0时,f(x)=x(1+x)当x