在三角形ABC内求一点P,使向量AP,BP,CP的平方和最小
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 08:54:10
在三角形ABC内求一点P,使向量AP,BP,CP的平方和最小
在平面直角坐标系中设三点A(a,b),B(c,d),C(e,f),P为三角形内一点(x,y)
则根据平面上两点距离公式
PA^2=(x-a)^2+(y-b)^2
PB^2=(x-c)^2+(y-d)^2
PC^2=(x-e)^2+(y-f)^2
PA^2+PB^2+PC^2=(x-a)^2+(y-b)^2+(x-c)^2+(y-d)^2+(x-e)^2+(y-f)^2
=(x^2-2ax+a^2)+(y^2-2by+y^2)+(x^2-2cx+c^2)+(y^2-2dy+y^2)+(x^2-2ex+x^2)+(y^2-2fx+f^2)
=[3x^2-2(a+c+e)x+a^2+c^2+e^2]+[3y^2-2(b+d+f)y+b^2+d^2+f^2]
因为a,b,c,d,e,f为六个互不关联的取值
所以仅当上边两个中括号内均取最小值时,PA^2+PB^2+PC^2有最小值
令f(x)=3x^2-2(a+c+e)x+a^2+c^2+e^2
f'(x)=6x-2(a+c+e)
令f'(x)=0得x=(a+c+e)/3
令g(y)=3y^2-2(b+d+f)y+b^2+d^2+f^2
g'(y)=6y-2(b+d+f)
令g'(y)=0得y=(b+d+f)/3
所以P点的坐标为P((a+c+e)/3,(b+d+f)/3)
下面证明P是重心
设重心为O,则O分有向线段CD的比例为2,由定比分点公式重心O的横坐标为[e+2*(a+c)/2]/(1+2)=(a+c+e)/3,同理纵坐标为(b+d+f)/3.
所以P与O重合,即P为重心
则根据平面上两点距离公式
PA^2=(x-a)^2+(y-b)^2
PB^2=(x-c)^2+(y-d)^2
PC^2=(x-e)^2+(y-f)^2
PA^2+PB^2+PC^2=(x-a)^2+(y-b)^2+(x-c)^2+(y-d)^2+(x-e)^2+(y-f)^2
=(x^2-2ax+a^2)+(y^2-2by+y^2)+(x^2-2cx+c^2)+(y^2-2dy+y^2)+(x^2-2ex+x^2)+(y^2-2fx+f^2)
=[3x^2-2(a+c+e)x+a^2+c^2+e^2]+[3y^2-2(b+d+f)y+b^2+d^2+f^2]
因为a,b,c,d,e,f为六个互不关联的取值
所以仅当上边两个中括号内均取最小值时,PA^2+PB^2+PC^2有最小值
令f(x)=3x^2-2(a+c+e)x+a^2+c^2+e^2
f'(x)=6x-2(a+c+e)
令f'(x)=0得x=(a+c+e)/3
令g(y)=3y^2-2(b+d+f)y+b^2+d^2+f^2
g'(y)=6y-2(b+d+f)
令g'(y)=0得y=(b+d+f)/3
所以P点的坐标为P((a+c+e)/3,(b+d+f)/3)
下面证明P是重心
设重心为O,则O分有向线段CD的比例为2,由定比分点公式重心O的横坐标为[e+2*(a+c)/2]/(1+2)=(a+c+e)/3,同理纵坐标为(b+d+f)/3.
所以P与O重合,即P为重心
在三角形ABC内求一点P,使向量AP+向量BP+向量CP最小
在三角形abc所在平面内求一点p使ap的平方加上bp的平方加上cp的平方最小
在△ABC所在平面内求一点P,使AP*2+BP*2+CP*2最小.
已知三角形ABC内一点P,连结AP,BP,CP并延长,分别与BC,AC,AB交于D,E,F,求AP+BP+CP 的值
求点p使三角形abc中AP+BP+CP值最小.作法!
已知P为三角形ABC所在平面内一点,且向量AP+2向量BP+3向量CP=向量0.延长AP交BC于点D,
已知P为三角形ABC内一点,且3向量AP+4向量BP+5向量CP=向量O,延长AP交BC于点D,
..已知P是三角形ABC内一点,且满足向量AP+2向量BP+3向量CP=0向量,设Q为CP的延长线与AB的交点,令向量C
如图,P为三角形ABC内一点,AP,BP,CP的延长线分别角BC,AC,AB于点D,E,F求三角形ABC面积
P为正三角形ABC内一点 且AP=4 BP=2根号3 CP=2 求三角形ABC的边长
已知P是三角形ABC内一点,求证:AP+BP+CP>0.5(AB+BC+CA).
在三角形ABC中,AC=2AB,角BAC等于60度,P为三角形内一点,AP=√3,BP=2,CP=5,求三角形ABC的面