设△ABC的内角A、B、C所对的边长分别为a、b、c,且acosB-bcosA=(3/5)c.(1)试求
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 10:33:19
设△ABC的内角A、B、C所对的边长分别为a、b、c,且acosB-bcosA=(3/5)c.(1)试求
设△ABC的内角A、B、C所对的边长分别为a、b、c,且acosB-bcosA=(3/5)c.
(1)试求tanA与tanB的关系
(2)求tan(A-B)的最大值
设△ABC的内角A、B、C所对的边长分别为a、b、c,且acosB-bcosA=(3/5)c.
(1)试求tanA与tanB的关系
(2)求tan(A-B)的最大值
(1)
∵acosB-bcosA=(3/5)c
∴sinAcosB-sinBcosA=(3/5)sinC=(3/5)sin(A+B)=(3/5)(sinAcosB+cosAsinB)
∴(2/5)sinAcosB=(8/5)cosAsinB
∴(sinAcosB)/(cosAsinB)=(8/5)/(2/5)=4
∴tanAcotB=(sinA/cosA)/(cosB/sinB)=(sinAcosB)/(cosAsinB)=4
∴tanA=4/cotB=4tanB
(2)tan(A-B)
=(tanA-tanB)/(1+tanAtanB)
=(4tanB-tanB)/[1+4(tanB)^2]
=3tanB/[1+4(tanB)^2]
=3/(1/tanB+4tanB)
≤3/{2√[(1/tanB)×(4tanB)]}
=3/2√4
=3/4
当且仅当1/tanB=4tanB,即tanB=1/2时,等号成立,最大值就是3/4.
∵acosB-bcosA=(3/5)c
∴sinAcosB-sinBcosA=(3/5)sinC=(3/5)sin(A+B)=(3/5)(sinAcosB+cosAsinB)
∴(2/5)sinAcosB=(8/5)cosAsinB
∴(sinAcosB)/(cosAsinB)=(8/5)/(2/5)=4
∴tanAcotB=(sinA/cosA)/(cosB/sinB)=(sinAcosB)/(cosAsinB)=4
∴tanA=4/cotB=4tanB
(2)tan(A-B)
=(tanA-tanB)/(1+tanAtanB)
=(4tanB-tanB)/[1+4(tanB)^2]
=3tanB/[1+4(tanB)^2]
=3/(1/tanB+4tanB)
≤3/{2√[(1/tanB)×(4tanB)]}
=3/2√4
=3/4
当且仅当1/tanB=4tanB,即tanB=1/2时,等号成立,最大值就是3/4.
设△ABC的内角A,B,C所对的边长分别为a,b,c,且acosB-bcosA=(3/5)c.(1)试求tanA/tan
设三角行ABC的内角A.B.C所对的边长分别为a.b.c且aCosB-bCosA=3/5c
设三角形ABC的内角A,B,C所对的边长分别为a,b,c,且acosB-bcosA=4c/5,则tanA/tanB多少
设三角形ABC的内角A.B.C所对边长分别为a.b.c,且acosB-bcosA=4/5c,则tanA/tanB的值
一道数学题:设三角形ABC内角A,B,C所对的边长分别为a,b,c,且acosB-bcosA=3c/5.
辅导求答案:设三角形ABC的内角A,B,C所对的边长分别为a,b,c,且acosB-bcosA=3/5 (1)求
设三角形ABC的内角A,B,C所对的边分别为a,b,c,且acosB-bcosA=3/5
设三角形ABC的内角A,B,C所对的边为a,b,c,且acosB-bcosA=b+c 1求A
设△ABC的内角A,B,C所对的边长分别为a.b.c且acosB=3.bsinA=4.求边长a
设三角形ABC的内角A,B,C所对的边长分别为a,b,c,且acosB=3,bsinA=4.求边长A
设三角形ABC的内角A,B,C所对的边 长分别为a,b,c,且acosB-bcosA=1/2c.求tanA/tanB的值
设△ABC的内角A,B,C所对的边长分别为a,b,c,且acosB=3,bsinA=4.