过双曲线y2-3x2=3的上支上一点P作双曲线的切线交两条渐近线分别于点A,B.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 02:31:02
过双曲线y2-3x2=3的上支上一点P作双曲线的切线交两条渐近线分别于点A,B.
(1)求证:OA(向量)•OB(向量)为定值;
(2)若OB(向量)=AM(向量),求动点M的轨迹方程.
(1)求证:OA(向量)•OB(向量)为定值;
(2)若OB(向量)=AM(向量),求动点M的轨迹方程.
1、设点A坐标为(x1,y1),B坐标为(x2,y2),P坐标为(x0,y0),M坐标为(xm,ym)
y>0
所以y=(3x^2+3)^0.5
y'=(3^0.5)x/[(x^2+1)^0.5]
所以切线方程为y-y0=(3^0.5)x0/[(x0^2+1)^0.5]*(x-x0)…………(1)
渐近线方程为y=3^0.5x…………(2)和y=-3^0.5x…………(3)
(1)与(2)、(3)分别联立解出
x1=(x0^2+1)^0.5+x0,y1=(3x0^2+3)^0.5+3^0.5x0
x2=-(x0^2+1)^0.5+x0,y2=(3x0^2+3)^0.5-3^0.5x0
OA(向量)•OB(向量)=x1x2+y1y2=2
2、OM(向量)=(x1+x2,y1+y2)
即xm=2x0,ym=2(3x0^2+3)^0.5
将xm=2x0代入ym中,得
ym^2/12-xm^2/4=1(y>0)
所以M的轨迹方程为y^2/12-x^2/4=1(y>0)
(根号我不会打,用0.5次方代替了,因此式子可能有些长,看着比较费劲,不好意思了.有不明白的只管说.)
y>0
所以y=(3x^2+3)^0.5
y'=(3^0.5)x/[(x^2+1)^0.5]
所以切线方程为y-y0=(3^0.5)x0/[(x0^2+1)^0.5]*(x-x0)…………(1)
渐近线方程为y=3^0.5x…………(2)和y=-3^0.5x…………(3)
(1)与(2)、(3)分别联立解出
x1=(x0^2+1)^0.5+x0,y1=(3x0^2+3)^0.5+3^0.5x0
x2=-(x0^2+1)^0.5+x0,y2=(3x0^2+3)^0.5-3^0.5x0
OA(向量)•OB(向量)=x1x2+y1y2=2
2、OM(向量)=(x1+x2,y1+y2)
即xm=2x0,ym=2(3x0^2+3)^0.5
将xm=2x0代入ym中,得
ym^2/12-xm^2/4=1(y>0)
所以M的轨迹方程为y^2/12-x^2/4=1(y>0)
(根号我不会打,用0.5次方代替了,因此式子可能有些长,看着比较费劲,不好意思了.有不明白的只管说.)
过y^2-3x^2=3的上支上一点p作双曲线的切线交两条渐近线分别于点a,b,求证;向量oa向量ob相乘为定值
(1)已知双曲线关于两坐标轴对称,且与圆x2+y2=10相交于点P(3,-1),若此圆过点P的切线与双曲线的一条渐近线平
已知双曲线3x2-y2=3,过点P(2,1)作直线l交双曲线于A,B两点.
过双曲线y^2-3x^2=3的上支上一点P作双曲线交两条渐进线分别于点A,B.(1)求证:向量OA·向量OB为定值
设P(x,y)是双曲线x^2/a^2 -y^2/b^2=1上的任一点,过P作双曲线两条渐近线的平行线,分别交渐近线于Q,
过双曲线x2/a2-y2/b2=1的右焦点F作双曲线斜率大于零的渐近线的垂线L,垂足为P,设L与双曲线的左右两支相交于A
如图,点P(-4,3)是双曲线Y=k1/x上一点,过点P作X轴Y轴的垂线,分别交x轴y轴于A,B两点,交双曲线Y=K2/
过点P(2,2)作直线与双曲线x2 - y2 /3=1交于A、B两点,且点P为线段AB的中点,则直线l的方程
过双曲线C:x2/a2-y2/b2=1上任意一点P作x轴的平行线,交双曲线的两条渐近线于Q,R,求证PQ*PR为定值
已知抛物线y2=2px(p>0)与双曲线x2 a2 - y2 b2 =1(a,b>0)的一条渐近线交于一点M(1m)点M
设F是双曲线x2/a2-y2/b2=1的右焦点,双曲线两渐近线分别为C1,C2过F作直线C1的垂线,分别交C1,C2于A
设P是双曲线X2/4-Y2/b2=1上一点,双曲线的一条渐近线方程为3X-2Y=0,F1F2分别是双曲线的左右焦点,若