求 微分 方程的通解 y'-2y/1-x^2=x+1 x=0 ,y=0
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 23:08:35
求 微分 方程的通解 y'-2y/1-x^2=x+1 x=0 ,y=0
先求 y'-2y/1-x^2=x+1 的通
用常数变易法.首先解一个齐次方程 y'=2y/1-x^2 的通解,用分离变量法,dy/2y=dx/1-x^2, 两边同时积分得:(1/2)ln|y|=(1/2)ln(|1+x|/|1-x|)+C, 化简得:y=C(1+x)/(1-x), 因 y=0 是 y'=2y/1-x^2 的解,因此C取一切实数.现在进行常数变易:令C=C(x), 将 y=C(x)(1+x)/(1-x) 代人原方程:y'-2y/1-x^2=x+1 得:(1-x^2)C'(x)=(x+1)(1-x)^2, 即是:C'(x)=1-x, 两边积分得:C(x)=x-(1/2)x^2+C, 于是原方程 y'-2y/1-x^2=x+1 的通解是 y=[x-(1/2)x^2+C](1+x)/(1-x).
对于过 x=0 , y=0 的特解,只需将初值代人 y=[x-(1/2)x^2+C](1+x)/(1-x), 即得 C=0, 代人通解得 y=[x-(1/2)x^2](1+x)/(1-x),
用常数变易法.首先解一个齐次方程 y'=2y/1-x^2 的通解,用分离变量法,dy/2y=dx/1-x^2, 两边同时积分得:(1/2)ln|y|=(1/2)ln(|1+x|/|1-x|)+C, 化简得:y=C(1+x)/(1-x), 因 y=0 是 y'=2y/1-x^2 的解,因此C取一切实数.现在进行常数变易:令C=C(x), 将 y=C(x)(1+x)/(1-x) 代人原方程:y'-2y/1-x^2=x+1 得:(1-x^2)C'(x)=(x+1)(1-x)^2, 即是:C'(x)=1-x, 两边积分得:C(x)=x-(1/2)x^2+C, 于是原方程 y'-2y/1-x^2=x+1 的通解是 y=[x-(1/2)x^2+C](1+x)/(1-x).
对于过 x=0 , y=0 的特解,只需将初值代人 y=[x-(1/2)x^2+C](1+x)/(1-x), 即得 C=0, 代人通解得 y=[x-(1/2)x^2](1+x)/(1-x),
(x-y^2)y'=1,求方程的通解
求方程x(1+y^2)dx-y(1+x^2)dy=0的通解
求方程x(1+y^2)dx+y(1+x^2)dy=0的通解
求方程(2x+y-4)dx+(x+y-1)dy=0的通解.
齐次方程(x-y-1)+(y-x+2)y'=0的通解
已知y(x)=e^x是方程(2x-1)y''-(2x+1)y'+2y=0的一个解,求此方程的通解.
微分方程组(X^2+Y)dx+(x+y)dy=0的通解
求y‘-(1/x)y=x^2 的通解
1 求方程(1+y^2)dx=(arctany - x)dy的通解 2求方程(x-2xy- y^2)y’+ =0的通解
求方程y'-y/x(1-x)=(1+x)^2的通解
求y'+2y+x=0的通解
求(1+x^2)y'-ylny=0的通解