已知向量a=(cosα,sinα),向量b=(cosβ,sinβ),其中0<向量α<向量β<π.若ka+b与a-kb的长
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 14:17:15
已知向量a=(cosα,sinα),向量b=(cosβ,sinβ),其中0<向量α<向量β<π.若ka+b与a-kb的长度相等
求β-α的值(k为非零的常数)
求β-α的值(k为非零的常数)
∵向量a=(cosα,sinα),向量b=(cosβ,sinβ)
∴|向量a|=√[(cosα)^2+(sinα)^2]=1
|向量b|=√[(cosβ)^2+(sinβ)^2]=1
向量a*向量b=cosαcosβ+sinαsinβ=cos(α-β)=cos(β-α)
∴|k向量a+向量b|
=√[|k向量a+向量b|^2
=√(|k向量a|^2+2k向量a*向量b+|向量b|^2)
=√(k^2*|向量a|^2+2k向量a*向量b+|向量b|^2)
=√[k^2+1+2kcos(β-α)]
|向量a-k向量b|
=√[|向量a-k向量b|^2
=√(|向量a|^2-2k向量a*向量b+|k向量b|^2)
=√(|向量a|^2-2k向量a*向量b+k^2*|向量b|^2)
=√[1+k^2-2kcos(β-α)]
∵k向量a+向量b与向量a-k向量b的长度相等
∴|k向量a+向量b|=|向量a-k向量b|
∴√[k^2+1+2kcos(β-α)]=√[1+k^2-2kcos(β-α)]
∴k^2+1+2kcos(β-α)=1+k^2-2kcos(β-α)
∴2kcos(β-α)=-2kcos(β-α)
∴4kcos(β-α)=0
∵k≠0
∴cos(β-α)=0
∵0
∴|向量a|=√[(cosα)^2+(sinα)^2]=1
|向量b|=√[(cosβ)^2+(sinβ)^2]=1
向量a*向量b=cosαcosβ+sinαsinβ=cos(α-β)=cos(β-α)
∴|k向量a+向量b|
=√[|k向量a+向量b|^2
=√(|k向量a|^2+2k向量a*向量b+|向量b|^2)
=√(k^2*|向量a|^2+2k向量a*向量b+|向量b|^2)
=√[k^2+1+2kcos(β-α)]
|向量a-k向量b|
=√[|向量a-k向量b|^2
=√(|向量a|^2-2k向量a*向量b+|k向量b|^2)
=√(|向量a|^2-2k向量a*向量b+k^2*|向量b|^2)
=√[1+k^2-2kcos(β-α)]
∵k向量a+向量b与向量a-k向量b的长度相等
∴|k向量a+向量b|=|向量a-k向量b|
∴√[k^2+1+2kcos(β-α)]=√[1+k^2-2kcos(β-α)]
∴k^2+1+2kcos(β-α)=1+k^2-2kcos(β-α)
∴2kcos(β-α)=-2kcos(β-α)
∴4kcos(β-α)=0
∵k≠0
∴cos(β-α)=0
∵0
已知向量a=(cosα,sinα),向量b=(cosβ,sinβ),其中0<α<β<π 若ka+b与a-kb的长度相等,
已知向量a=(cosα,sinα),向量b=(cosβ,sinβ),且|ka+b|=根号3|a-kb|.
已知向量a=(cosα,sinα),b=(cosβ,sinβ)(0<α<β<π),且ka+b于a-kb的长度相等,求β-
已知向量a={cosα,sinα},b={cosβ,sinβ},且满足{ka+b}=根号3{a-kb}(k>0)
已知向量a=(cosα,sinα),b=(2cosβ,2sinβ),若实数k使|ka+b|=|a-kb|成立,
已知向量a=(cosα,sinα),b=(cosβ,sinβ),且a,b满足关系式|ka+b|=√3|a-kb|,(k>
设向量a=(cosα,sinα),向量b=(cosβ,sinβ),且0<α<β<π ,若向量a乘以向量b的数量积为4/5
有关向量的计算已知向量a=(cosα,sinα),b=(2cosβ,2sinβ),若实数k使|ka+b|=|a-kb|成
已知向量a=(cosα,sinα),向量b=(cosβ,sinβ) 若α-β=π/3,求a+2b向量的绝对值
已知向量a=(cosα,sinα),向量b=(cosβ,sinβ),向量a-向量b的绝对值=2/5根号5
已知向量a=(cosα,sinα),向量b等于(cosβ,sinβ),向量a减向量b的绝对值等于4√ 13/13.(1)
若a=(cosa,sina),b=(cosβ,sinβ),且|ka+b向量|=根号3|a向量-kb向量|