作业帮 > 综合 > 作业

用两种方法解答:已知m、n是关于x的方程x2+(p-2)x+1=0两个实数根,求代数式(m2+mp+1)(n2+np+1

来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/06 17:27:20
用两种方法解答:已知m、n是关于x的方程x2+(p-2)x+1=0两个实数根,求代数式(m2+mp+1)(n2+np+1)的值.
用两种方法解答:已知m、n是关于x的方程x2+(p-2)x+1=0两个实数根,求代数式(m2+mp+1)(n2+np+1
∵m、n是x2+(p-2)x+1=0的根,
∴m+n=2-p,mn=1.
方法一:
m2+(p-2)m+1=0,n2+(p-2)n+1=0.
即m2+pm+1=2m,n2+pn+1=2n.
原式=2m×2n=4mn=4.
方法二:
(m2+mp+1)(n2+np+1)
=(m2+mp)(n2+np)+m2+mp+n2+np+1
=m2n2+m2np+mpn2+mnp2+m2+mp+n2+np+1
=1+mp+np+p2+m2+n2+mp+np+1
=2+p2+m2+n2+2(m+n)p
=2+p2+m2+n2+2(2-p)p
=2+p2+m2+n2+4p-2p2
=2+(m+n)2-2mn+4p-2p2+p2
=2+(2-p)2-2+4p-2p2+p2
=4-4p+p2+4p-p2
=4.